"EXPLORING THE TUMOR MICROENVIRONMENT WITH FOCUS ON PLACENTAL GROWTH FACTOR AND COLORECTAL CANCER"

FINAL REPORT ESMO TRANSLATIONAL RESEARCH FELLOWSHIP

Karin Tamas, MD

University Medical Center Groningen, The Netherlands
Recipient Information

Name: Karin Tamas
Email: k.tamas@umcg.nl
Research Mentor: Prof. Elisabeth G.E. de Vries, MD, PhD

Grant Information

Project Title: "Exploring the tumor microenvironment with focus on placental growth factor and colorectal cancer"
Start date: 1st September 2010
End date: 1st September 2012

Host Institute Information

University of Groningen, University Medical Center Groningen
Department of Medical Oncology
Head of department: Prof. Elisabeth G.E. de Vries, MD, PhD
Website: www.oncologylaboratoryumcg.nl
Dedication

This work is dedicated to my family and friends, rich source of inspiration and wise support.
Rationale and Aim

This research project is centered on translating know-how from the laboratory to the clinic in the area of tumor microenvironment, with focus on placental growth factor (PIGF) and colorectal cancer.

Drug development in oncology has put much emphasis on inducing DNA damage in fast-proliferating cancer cells. A recently arising alternative is to target the tissue surrounding the tumor – the microenvironment, in view of its increasingly known role in facilitating disease progression (1,2). Sustained and aberrant angiogenesis is a key component of the tumor microenvironment which drives cancer growth and metastases (3,4). Inhibition of angiogenesis, mainly by targeting vascular endothelial growth factor A (VEGF-A) and its corresponding receptors (VEGFRs) has emerged as a valuable strategy to treat cancer (5,6). However, the duration of response is rather short and tumors eventually evade treatment (7-10). Therefore, novel targets are needed to overcome resistance and improve cancer treatment.

A number of factors are of potential interest in this respect. Firstly, PIGF, a VEGF-A homolog, was isolated in 1991 from placenta and found only in very low levels under physiological conditions, but upregulated in pathological circumstances such as wound healing, ischemia and tumor growth (11-13). Preclinical PIGF inhibition restricts growth and metastasis of various tumors, including those resistant to VEGF(R) inhibitors, and enhances the efficacy of chemotherapy and VEGF(R) inhibitors (14-17). These findings led to the clinical development of RO5323441
EXPLORING THE TUMOR MICROENVIRONMENT WITH FOCUS ON PLACENTAL GROWTH FACTOR AND COLORECTAL CANCER

(TB-403), a monoclonal antibody against PIGF. The clinical efficacy and safety of RO532344, its pleiotropic and complementary mechanism to VEGF(R) inhibitors and the negligible induction of an angiogenic rescue program suggest that RO5323441 may constitute a novel approach for cancer treatment (18). Since its application did not coincide with toxicity, a more precise definition of the optimal therapeutic dose is required (19,20). Molecular imaging may be an important tool to fill this gap, as previously highlighted (21-24). By incorporating this approach, we could gain an early quantitative insight in the in vivo kinetics and tumor uptake of the PIGF antibody (25). Therefore, labeling the RO5323441 with radioactive isotopes followed by imaging its uptake with single-photon emission computed tomography (SPECT) or positron emission tomography (PET) is an interesting option to potentially guide RO5323441-based cancer therapy. To this end, imaging the soluble pro-angiogenic target PIGF with \(^{89}\)Zr-RO5323441 PET was the primary research goal addressed during the first year of this ESMO fellowship.

Secondly, chemokine receptors expressed by tumor cells and their corresponding ligands form an important network exploited by cancer cells to interact with their microenvironment. Stromal cell-derived factor-1 (SDF-1/CXCL12) and its chemokine receptor 4 (CXCR4) play a pivotal role in tumor proliferation, angiogenesis, invasive growth and distant spread (26,27). Noteworthy, there is indication that bevacizumab (mAb against VEGF-A) can increase CXCR4 and CXCL12 expression in rectal cancer (28). Activation of this pathway may induce resistance and impede radical treatment. Hence, during the second year of the fellowship, expression of these tumor microenvironment factors in relation to
treatment response and survival was assessed by immunohistochemistry in a well-documented series of rectal cancer patients.

Experimental design

89Zr-RO5323441 PET imaging study in human tumor xenografts

In this study we radiolabeled RO5323441 and validated 89Zr-RO5323441 as a tool to study drug tumor uptake and organ distribution by PET imaging in human tumor xenograft models with different PlGF expression. 89Zr-RO5323441 was tested *in vitro* for stability and immunoreactivity. Subsequently, tracer tumor uptake and organ distribution were evaluated for 10, 50 and 500 μg 89Zr-RO5323441 in mice bearing PlGF-expressing human hepatocellular carcinoma xenografts (Huh7) or human renal cell carcinoma xenografts (ACHN) without detectable PlGF expression. 111In-IgG served as a control for non-specific tumor uptake and organ distribution assessment. *Ex-vivo* immunofluorescent staining of tumor slides with anti-CD68 antibody labeled with Alexa 488 and RO5323441 labeled with Cy5 were used to detect tumor-associated macrophages and to study the molecular mechanisms behind specific tumor tracer uptake.

89Zr-RO5323441 PET imaging study for recurrent glioblastoma patients treated with bevacizumab

A phase 1/2 study of combined bevacizumab and RO5323441 treatment is currently ongoing for patients with recurrent glioblastoma (NCT01308684). However, the amount of RO5323441 to reach the tumor and how uptake is affected by bevacizumab are yet unknown. Molecular imaging could be an innovative approach to answer these questions. Clinical feasibility of immuno-PET to visualize soluble
Serial immunohistochemical measurements of tumor microenvironment factors in stage IV rectal cancer patients before and after radiotherapy, bevacizumab and CapeOx treatment

In this study we examined the relation between proteins involved in the CXCR4 & VEGFR signaling pathways and response to treatment and survival in metastatic rectal cancer patients (principle investigator: Prof. G.A.P. Hospers, MD, PhD). Tumors of 50 patients enrolled in a multicenter phase 2 trial were studied (NTR2029). In short, eligible were adults with a rectal adenocarcinoma and synchronous liver or lung metastases at diagnosis. They received short-course radiotherapy followed by preoperative bevacizumab, oxaliplatin and capecitabine (CapeOx) treatment administered every 3 weeks for up to 6 cycles. Surgery (total mesorectal excision, resection or radiofrequency ablation) was performed 6 to 8 weeks after the last bevacizumab dose. Clinicopathological and follow-up data were prospectively acquired. Diagnostic pre-treatment rectal tumor biopsies and post-treatment surgical specimens of the primary rectal cancer, regional lymph nodes, liver and lung metastases were collected from the 7 participating centers in The Netherlands (09/2010–12/2011). Immunohistochemical analysis of formalin–fixed
and paraffin-embedded (FFPE) paired tumor samples included the evaluation of CXCR4, CXCL12, PlGF and VEGF-A protein expression.

Results, Conclusions and Future Perspectives

89Zr-RO5323441 PET is a novel tool for in vivo imaging of placental growth factor and provides a real-time assessment of PlGF antibody RO5323441 tumor penetration and biodistribution. Our preclinical validation study showed that the tracer can be produced with high specific activity, a radiochemical purity >95%, stability in human serum and a fully preserved immunoreactivity. 89Zr-RO5323441 showed specific tumor uptake. These data support the feasibility of 89Zr-RO5323441 PET imaging in further preclinical and clinical studies. The 89Zr-RO5323441 PET imaging study for recurrent glioblastoma patients treated with bevacizumab is planned to start in the last quarter of 2012. In addition, a 89Zr-RO5323441 PET guided optimal RO5323441 dose-finding phase 1 protocol was fully developed at the FLIMS 13 workshop. The immunohistochemical analysis of rectal cancer microenvironment is almost completed.

I intend to finalize my ESMO research project with a PhD thesis which I hope to defend early 2013. Therefore, I have received a half-year extension of my appointment at the Department of Medical Oncology of University Medical Center Groningen, The Netherlands.

List of Publications Resulting from this Grant

5. **K. Tamas**, et al. Serial immunohistochemical measurements of tumor microenvironment factors in stage IV rectal cancer patients before and after radiotherapy, bevacizumab and CapeOX treatment (*work in progress; manuscript in preparation*).

Selection of Courses & Workshops Attended During the Fellowship

Molecular mechanisms in cancer. A Cancer Genomics Centre/Centre for Biomedical Genetics meeting. Royal Tropical Institute, Amsterdam, The Netherlands, 11/2012.

Methods in clinical cancer research. FLIMS 13 workshop. Waldhaus Flims, Switzerland, 06/2011.

Grants week. University of Groningen, The Netherlands, 06/2011.
EXPLORING THE TUMOR MICROENVIRONMENT WITH FOCUS ON PLACENTAL GROWTH FACTOR AND COLORECTAL CANCER

Translational imaging workshop. Erasmus Molecular Medicine Postgraduate School, Rotterdam, The Netherlands, 01/2011.

Acknowledgments

I thank Prof. Dr. Elisabeth G.E. de Vries for her exceptional professional and personal support throughout the fellowship; Prof. Dr. Geke A.P. Hospers and Dr. Annemiek M.E. Walenkamp, for their supervision and guidance in the clinical studies; Dr. Thijs H. Oude Munnink for teaching and cooperation in the molecular imaging studies; Dr. Hetty Timmer-Bosscha and Dr. Marcel A.T.M. van Vugt for insightful discussion and advice on study conception and execution; colleagues in the Multidisciplinary Oncology Laboratory, Departments of Medical Oncology, Surgery, Pathology and Nuclear Medicine, University Medical Center Groningen, for technical and logistical guidance. I would like to acknowledge my colleagues Malgosia Krajewska (PhD student) and Urszula Domanska (PhD student). Their gracious professional presence dispelled the clouds.

I thank the European Society for Medical Oncology (ESMO) for granting me this experience. In the eclectic research environment at the Medical Oncology department of University Medical Center Groningen, The Netherlands, I have learnt how to design early clinical trials with sound biological background and input from the laboratory. The comprehensive insight I have gained into preclinical and clinical cancer research stimulated me intellectually and strengthened my determination to become a physician scientist, which is my long-term career goal.
References

(28) Xu L, Duda DG, di Tomaso E, Ancukiewicz M, Chung DC, Lauwers GY, et al. Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1α,
