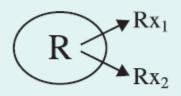


Methodological challenges

Jan Bogaerts, PhD
Methodology Vice Director
EORTC

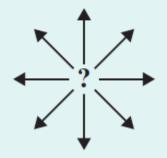
What is the question?



Behera et al, Cancer Control 2007

A clear-enough future (we can still be wrong but have a fairly clear picture what the future will look like)

» Treatment with dramatic side effects ("penicillin effect"). Non-RCTs appear to be optimal design to address this level of uncertainty.


Alternate futures (a few discrete alternatives whose outcomes cannot be reliably predicted)

» Equipoise exists; an RCT the best method to resolve this level of uncertainty.

A range of futures (a range of potential futures can be identified but no natural discrete scenario has emerged)

» Many new drugs. Few data on safety and efficacy. Phase II trials to address this level of uncertainty.

True ambiguity (complete ignorance)

» A new chemical moiety. Further preclinical or phase I testing necessary to help shape our uncertainty in more solid direction.

Levels of clinical evidence

Level I	Adequately powered, high quality randomised trial, or meta-analysis of randomised trials showing statistically consistent results
Level II	Randomised trials inadequately powered, possibly biased, or showing statistically inconsistent results
Level III	Non-randomised studies with concurrent controls
Level IV	Non-randomised studies with historical controls (i.e. typical single arm phase II studies)
Level V	Expert committee review, case reports, retrospective studies

I. F. Tannock, Eur. J. Cancer Supplements Vol. 1, No. 5, Sept. 03, p. 93

(Part of) the Oxford 2011 Levels of Evidence

,	Step 1 (Level 1*)	Step 2 (Level 2*)	Step 3 (Level 3*)	Step 4 (Level 4*)
		Systematic review of surveys that allow matching to local circumstances**	Local non-random sample**	Case-series
monitoring test accurate?	of cross sectional studies with	Individual cross sectional studies with consistently applied reference standard and blinding	Non-consecutive studies, or studies without consistently applied reference standards**	Case-contro "poor or nor reference st
therapy? (Prognosis)	Systematic review of inception cohort studies	Inception cohort studies	Cohort study or control arm of randomized trial*	Case-series control stud quality prog study**
	Systematic review of randomized trials	Randomized trial or observational study with dramatic effect	Non-randomized controlled cohort/follow-up study**	Case-series studies, or l controlled s
COMMON harms? (Treatment Harms)	Systematic review of randomized trials, systematic review of nested case-control studies, nof-1 trial with the patient you are raising the question about, or observational study with dramatic effect	Individual randomized trial or (exceptionally) observational study with dramatic effect	Non-randomized controlled cohort/follow-up study (post-marketing surveillance) provided there are sufficient numbers to rule out a common harm. (For long-term harms the duration of follow-up must be sufficient.)**	Case-series or historical studies**
	Systematic review of randomized trials or <i>n</i> -of-1 trial	Randomized trial or (exceptionally) observational study with dramatic effect		
	Systematic review of randomized trials	Randomized trial	Non -randomized controlled cohort/follow-up study**	Case-series or historical studies**

Oxford levels of evidence: tentative comments

- It is conceptually interesting to consider different questions
 - It does not seem to be very different from the 'usual' table
- Why would a systematic review of n-of-1 trials be better quality than a randomized trial?
- One could consider amending/modifying this table with some ideas for rare cancers
- BUT ...

Levels of evidence for rare cancers

 There is no logical rationale to say that the levels of evidence would function differently "because" it is harder to get data ...

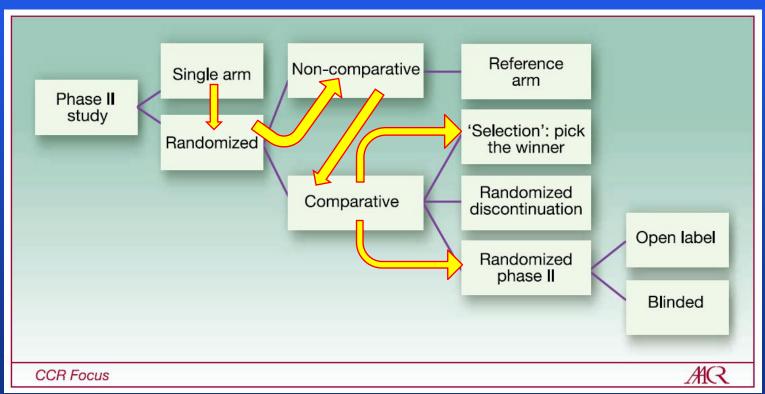
Considerations for design

- RCT remains the gold standard
- n-of-1 design: this is a sequence of different treatments in one and the same patient.
 - Has the feel of cross-over design
 - Question: how does that work in oncology?
- Play with the type I error (or even type II error). For example:
 - One sided testing: can be acceptable
 - Higher type I error (alpha): this will never be found, because the trial will not be repeated
 - More optimistic alternative hypothesis: this has the same practical effect as increasing the type II error (beta): only a really strong improvement has good chances of being identified. Look more at the confidence interval.

Considerations for design

- Single-arm/non-comparative approaches
- The fact of having some responses is an improvement in itself
- The fact of stopping progression is an improvement in itself
- Robust historical data is available with small between trial variability (not likely, but happens)

There is no current standard


I would then (still) suggest a randomized approach with either a Phase II selection design, or a play-the-winner (adaptive randomization) approach

Other cases:

- Maybe it is worthwhile to incorporate in the plans a trial / decision point where disagreement is settled
- If the standard is wait-and-see, that can be randomized against

Example of evolution: how we see Phase II trials

- Trying to improve the Positive Predictive Value
- Accommodate many objectives: moving to an amalgam of approaches

Seymour et al. CCR 2010

Back-Up

Looking for new common ground

- Trials with a high level of patient startup work
 - Screening many to obtain some eligible patients
 - Splitting according to markers
 - High workload to include patients
 - Timelines to enter a patient
- Think about:
 - Trials spanning several phases of development
 - Trials with multiple additional analyses / endpoints
 - TR analysis and planning of such analysis
 - Biobanking
 - Tools to perform complex logistics

Buzzword: Adaptive designs

- We are learning to plan and run these complicated trials in an acceptable way
 - Appropriate use of IDMC
 - Appropriate use of adaptive elements in the design
- Word of warning: adaptive designs are not the solution to manage the unexpected. But adaptive elements can be very interesting to manage the complicated.
- We are already using many adaptive ideas in our trials (all phases).
- Keys here are: think and discuss upfront and monitor during the trial

No direct measure of benefit / no

comprehensive measure of drug activity

/ small subset of benefiting pats.

not precise, open to bias /many

definitions / frequent assessments /

need to balance timing x arms

Smaller, shorter, SD included, Not stat. validated as surrogate for OS /

FDA table of endpoints							
Endpoint	Regulatory Evidence	Study Design	Advantages	Disadvantages			
OS	Clinical benefit	Randomized	Direct measure of benefit, easy, precise	Large studies, crossover / followup Tx affects, noncancer deaths			
Symptoms	Clinical benefit	Randomized, blinded	Patient perspective of direct clinical benefit	Blinding hard, missing data, clinically relevant effect, validated tools lacking			
DFS	Surrogate	Randomized, blinded, blinded review	Smaller, shorter	Not stat. validated as surrogate for OS / not precise, open to bias / many definitions			
RR	Surrogate	Blinded, blinded review	1-arm possible, smaller, shorter, attributable to drug	No direct measure of benefit / no comprehensive measure of drug activity / only subset of benefiting pats.			

1-arm possible, smaller,

crossover / other Tx not

affecting, objective &

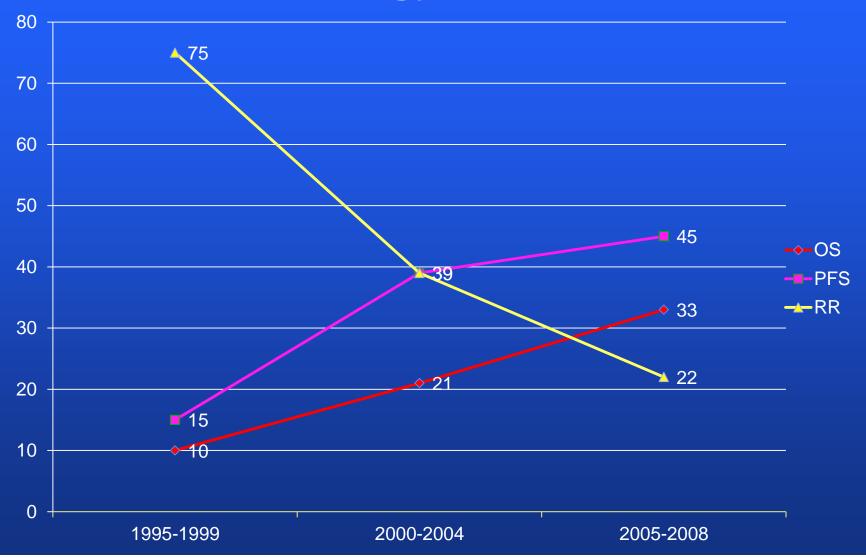
blinded review shorter, durable CR = benefit

Blinded.

Randomized,

blinded,

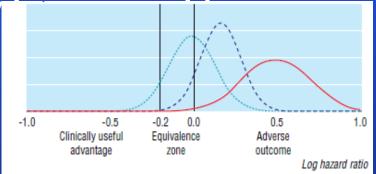
blinded review


CRR

PFS

Surrogate

Surrogate


Evolution of endpoints leading to EMA oncology approvals

Alternative designs (cont'd)

- Bayesian design, formally incorporating historical data into the design
 - Involve prior beliefs which may not be universally accepted
 - If we conduct a small trial, the choice of the prior

may carry

Likelihood data
 Posterior distribution
 Prior distribution