The traditional Mediterranean diet and cancer risk

Cristina Bosetti Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy

> ESMO Symposium – Cancer and Nutrition 20-21 March 2009 Zurich, Switzerland

Traditional Mediterranean diet

- Abundant and variable plant foods
- High consumption of cereals
- Olive oil as the main added fat
- Low intake of (red) meat
- Moderate consumption of wine

Fruit and vegetables

A diet rich in fruit and vegetables protects against common epithelial cancers, including in particular those of the digestive tract.

VEGETABLES and gastric and esophageal cancer. European Prospective Investigation into Cancer and Nutrition (EPIC).

			Calibrated (per 100 g2)			
Site/type	Cases number	2	3	4	р	HP (C105%)
		HR (C195%)	HR (C195%)	HR (C195%)	trend	ПК (С195%)
Stomach						
Total vegetables	330	1.14 (0.85-1.52)	0.82 (0.58-1.16)	1.15 (0.78-1.70)	0.99	0.91 (0.65-1.28)
Total fresh fruit		1.17 (0.87-1.58)	0.85 (0.61-1.19)	0.99(0.68 - 1.42)	0.51	1.04(0.91 - 1.20)
Citrus		0.86(0.64 - 1.17)	0.67 (0.48-0.93)	0.88 (0.63-1.24)	0.21	0.96(0.77 - 1.22)
Cardia						
Total vegetables	94	1.25 (0.68-2.28)	1.53 (0.81-2.89)	1.88 (0.91-3.90)	0.08	0.99 (0.50-1.97)
Total fresh fruit		1.38 (0.81-2.34)	0.72(0.38 - 1.37)	0.96 (0.48-1.91)	0.46	1.02(0.80 - 1.30)
Citrus		0.72(0.42 - 1.23)	0.60 (0.33-1.07)	0.62 (0.32-1.19)	0.08	0.77(0.47 - 1.22)
Non-cardia						
Total vegetables	159	1.15(0.77 - 1.73)	0.77 (0.47-1.28)	1.12 (0.64–1.97)	0.87	0.96(0.60-1.52)
Total fresh fruit		0.81 (0.53-1.56)	0.70(0.44 - 1.11)	0.85 (0.51-1.42)	0.39	1.03 (0.85-1.26)
Citrus		1.01 (0.65-1.57)	0.73 (0.45-1.18)	1.10 (0.68–1.78)	0.96	1.08 (0.82-1.40)
Intestinal			· · · · · ·			
Total vegetables	109	1.03 (0.63-1.69)	0.79 (0.44-1.42)	0.89 (0.44-1.79)	0.55	0.66 (0.35-1.22)
Total fresh fruit		0.84 (0.49-1.44)	0.75 (0.42-1.32)	0.86 (0.46-1.61)	0.55	1.02 (0.82-1.28)
Citrus		0.91 (0.53-1.57)	0.67 (0.38-1.19)	0.95 (0.53-1.69)	0.60	1.01(0.73 - 1.40)
Diffuse		((
Total vegetables	116	1.38 (0.85-2.22)	1.03 (0.57-1.88)	1.40 (0.70-2.81)	0.49	1.18 (0.69-2.03)
Total fresh fruit		1.23 (0.75-2.03)	0.95 (0.55-1.65)	0.68 (0.35-1.31)	0.22	0.97 (0.74-1.29)
Citrus		0.99 (0.60-1.63)	0.58 (0.32-1.04)	0.95 (0.53-1.68)	0.46	0.79 (0.50-1.28)
Oesophagus		,	,			
Total vegetables	65	0.88 (0.48-1.63)	0.71 (0.34-1.48)	Tertiles instead of quartiles	0.36	0.72 (0.32-1.64)
Total fresh fruit		0.67 (0.37-1.22)	0.94 (0.49-1.80)	Tertiles instead of quartiles	0.75	0.84 (0.60-1.17)
Citrus		0.56 (0.30-1.03)	0.73 (0.39-1.37)	Tertiles instead of quartiles	0.22	0.77 (0.46-1.28)

TABLE IV - TOTAL VEGETABLES, TOTAL FRESH FRUIT AND CITRUS INTAKE AND THE RISK OF STOMACH AND OESOPHAGUS ADENOCARCINOMA

(Gonzàles et al., Int J Cancer 2006)

VEGETABLES and upper aero-digestive tract cancers. EPIC study.

Table 4 Estimates of relative risk^a and 95% confidence intervals (CI) for SCC of the upper aero-digestive tract for quintiles of predicted fruits and vegetables intake

	RR (95% CI)					p for trend
	1. quintile	2. quintile	3. quintile	4. quintile	5. quintile	
Total fruits and vegetables	1	0.64 (0.46-0.89)	0.67 (0.46-0.97)	0.61 (0.40-0.94)	0.60 (0.37-0.99)	0.035
Total fruits	1	0.63 (0.45-0.88)	0.67 (0.46-0.96)	0.68 (0.46-1.02)	0.60 (0.38-0.97)	0.041
Citrus fruits	1	0.90 (0.66-1.24)	0.56 (0.38-0.83)	0.84 (0.59-1.19)	0.76 (0.51-1.13)	0.129
Total vegetables	1	0.92 (0.67-1.27)	1.14 (0.80-1.61)	0.86 (0.56-1.32)	0.80 (0.49-1.31)	0.459
Fruiting vegetables	1	0.89 (0.65-1.21)	0.90 (0.63-1.28)	0.85 (0.56-1.30)	0.72 (0.42-1.25)	0.249
Root vegetables	1	0.97 (0.68-1.38)	0.88 (0.61-1.27)	0.67 (0.44-1.01)	0.65 (0.41-1.01)	0.020
Leafy vegetables	1	0.82 (0.59-1.13)	0.88 (0.61-1.26)	0.83 (0.53-1.31)	0.87 (0.50-1.49)	0.562
Cabbages	1	1.01 (0.71-1.43)	0.79 (0.53-1.17)	0.71 (0.45-1.11)	0.89 (0.55-1.42)	0.412
Onion, garlic	1	1.03 (0.70–1.52)	0.98 (0.65–1.47)	0.96 (0.63–1.48)	1.17 (0.73–1.86)	0.447

(Boeing et al., Int J CCC 2006)

Fruit and vegetables and cancer risk

Evidence for a risk reduction					
Probable	Limited				
Vegetables	Vegetables				
Mouth and pharynx	Nasopharynx				
Larynx	Lung				
Esophagus	Colorectum				
Stomach	Ovary				
	Endometrium				
Fruit	Fruit				
Mouth and pharynx	Nasopharynx				
Larynx	Pancreas				
Esophagus	Liver				
Lung	Colorectum				
Stomach					
(World Cancer Research Fund, 2007)					

Whole grains

Whole grain food intake has been consistently related to reduced risk of colorectal cancer, but also of several other sites.

WHOLE GRAINS consumption. Relative risks and 95% CI of selected cancers. Italian case-control studies.

⁽La Vecchia et al., Proc Nutr Soc 2003) 10

Dietary fibres

Several case-control studies have reported a protective effect of fibres on colon and rectal cancers.

Dietary fibres – Colorectal cancer

Relative risk of colorectal cancer according to fibre consumption, among 1953 cases and 4154 controls from Italy.

Type of fibre	Quintile of intake, OR (95% CI) ^a			
Type of fibre	Men	Women		
Cellulose	0.65 (0.55-0.76)	0.66 (0.55-0.79)		
Insoluble NCP	0.81 (0.69-0.94)	0.81 (0.67-0.97)		
Total insoluble fibre	0.69 (0.59-0.82)	0.69 (0.58-0.62)		
Soluble NCP	0.64 (0.52-0.77)	0.66 (0.54-0.82)		
Total (Englyst) fibre	0.66 (0.54-0.79)	0.67 (0.55-0.82)		
Lignin	0.84 (0.70-1.02)	0.90 (0.72-1.12)		

(Negri et al, CEBP 1998)

Dietary fibres – Colorectal cancer

Relative risk of colorectal cancer according to fibre consumption, among 1065 cases in the EPIC study.

	Quintile					Hazard ratio (95% CI)	р
	1	2	3	4	5	for each quintile increase	
Colorectal cancers Number Hazard ratio (95% Cl)	237 1.00	234 0·94 (0·78–1·13)	200) 0·77 (0·63–0·95)	200 0·76 (0·61–0·95)	194) 0·75 (0·59–0·95)	 0·923 (0·873–0·976)	0.005
Colon cancers							
Number	156	158	131	130	131		
Hazard ratio (95% CI)	1.00	0.95 (0.75-1.19	0.75 (0.58-0.96)	0.71 (0.55-0.94)	0.72 (0.54-0.97)	0.908 (0.848-0.972)	0.006
Left colon cancer (n=286)	1.00	0.66 (0.46-0.93	0.55 (0.37–0.80)	0.51 (0.34-0.77)	0.65 (0.43–0.99)	0.891 (0.804-0.989)	0.030
Right colon cancer (n=287)	1.00	1.21 (0.84–1.71)	0.93 (0.63–1.37)	0.89 (0.59–1.35)) 0.73 (0.46–1.19)	0.911 (0.819-1.013)	0.087
Rectal cancers							
Number	81	76	69	70	63		
Hazard ratio (95% CI)	1.00	0.92 (0.66–1.27)	0.83 (0.59–1.18)	0.85 (0.59–1.24)) 0.80 (0.53–1.22)	0.952 (0.864–1.048)	0.319

Cox's regression using age, weight, height, sex, non-fat energy, energy from fat, and stratified by centre.

Table 3: Numbers of cancers and hazard ratios by quintile of sex-specific total fibre intake

(Bingham et al, Lancet 2003) 13

Refined grains

Refined grain intake has been associated to increased risk of stomach, colorectal and upper digestive tract cancers in studies conducted in Mediterranean populations. REFINED GRAIN consumption. Relative risks and 95% CI of selected cancers. Italy.

(Chatenoud et al., Am J Clin Nutr 1999)

Insulin hypothesis

- Refined cereals and sugar can produce
 - glycemic overload
 - insulin resistance
- This may lead to cellular growth promotion via specific hormones or insulin-like growth factors

Glycemic index/load

The ability to affect blood glucose and insulin levels by dietary carbohydrates is best measured by the glycemic index (GI) and glycemic load (GL), which have been directly associated with risk of several chronic conditions.

Glycemic load and gastric cancer

	Cases	Control	OR (95% CI) ^a	OR (95% CI) ^b
Glycemic load				
Ι	162	551	1	1
II	197	513	1.48 (1.14-1.91)	1.44 (1.11-1.87)
III	192	523	1.66 (1.28-2.17)	1.62 (1.24-2.12)
IV (high)	218	494	2.12 (1.62-2.79)	1.94 (1.47-2.55)
III				
χ2 trend			29.14 (p<0.001)	21.94 (p<0.001)

(Augustin et al., Ann Oncol 2004)

Glycemic load and colorectal cancer

(Franceschi et al., Ann Oncol 2001)

Fats

The issue of fats, and of specific types of fats, on the risk of breast and colorectal cancers, as well as of several other neoplasms, remains a major open question.

In a large study from Italy, isocaloric substitution of 5% of total calories as saturated fats by unsaturated ones was associated with reduction in breast (OR= 0.67) and colorectal (OR=0.78) cancer risk

Olive oil and cancer risk

Olive oil is a major source of monounsaturated fats in Mediterranean countries, but also an important source of several micronutrients and food components.

It appears to be a favourable indicator of the risk of various common cancers, although the evidence is still open to evaluation.

Olive oil and breast cancer

		c	Odds ratio associated with categories of intake					
Study	Case/controls	1 (low)	2	3	4	5 (high)	P for trend	b'^a
Toniolo et al. (1989); Italy	250/499	1.0	0.8	1.0	0.8		0.71	-0.057
Martin-Moreno et al.								
(1994); Spain	762/988	1.0	0.79 (0.59–1.08)	0.72 (0.51-1.01)	0.66 (0.46-0.97)		0.01	-0.127
Trichopoulou et al.			· ·		, , ,			
(1995); Greece	820/1,548	0.97 (0.74–1.27)	1.0	0.75 (0.57–0.98)			-	-0.086
La Vecchia et al.								
(1995); Italy	2,569/2,588	1.0	1.05 (0.9–1.3)	0.99 (0.8–1.2)	0.93 (0.7–1.2)	0.87 (0.7–1.1)	0.05	-0.0233
Pooled OR for the high γ^2 beterogeneity with 2	nest category of cor 2 <i>df:</i> 1.73	nsumption (from	the last three s	studies ^b): 0.79 (0).67-0.92)			

 TABLE 2

 Pooled Odds Ratio and 95% Confidence Interval for the Association between Olive Oil Intake and Breast Cancer

Weighted average of b' (from all four studies): -0.0581

(Lipworth et al., Prev Med 1997)

Olive oil and other cancers

TABLE 3

Studies Evaluating the Association between Olive Oil Intake or Monounsaturated Fat Intake in Olive Oil-Consuming Mediterranean Countries and Cancer of the Colon, Ovary, Endometrium, Pancreas, or Esophagus

	Odds ratio associated with categories of intake						
Study	Cases controls	1 (low)	2	3	4	5 (high)	P for trend
Colorectal cancer							
Benito et al. (1991); ^a	286						
Spain	295	1.00	1.01	0.46	0.72		0.16
Ovarian cancer							
Tzonou et al. (1993); ^a	189						
Greece	200	0.80 (0).65–0.99) per 1 S	SD increment in	intake		
Endometrial cancer							
Tzonou et al. (1996); ^a	145						
Greece	298	0.74 (0).54–1.03) per 1 §	SD increment in	intake		
Levi et al. (1993); ^b	274						
Italy	572	1.0	0.56	0.82			0.05
Pancreatic cancer							
Kalopothaki et al. (1995);ª	181						
Greece	181 hospital	1.04 (0).86–1.25) per 1 §	SD increment in	intake		
	181 visitor	0.97 (0).80-1.17) per 1 §	SD increment in	intake		
Esophageal cancer							
Tzonou et al. (1996); ^a	56 ADC ^c	1.00	1.07	1.14	1.23	1.31	0.73
Greece	43 SCC 200	1.00	0.74	0.55	0.41	0.30	0.14

(Lipworth et al., Prev Med 1997)

Olive oil and colorectal cancer

	Tertile of intak	- 2	
	2	3	χ^2 trend
Olive oil Colorectal	0.87 (0.75-1.01)	0.83 (0.70-0.99)	4.49*
Colon Rectum	0.82 (0.68-0.98) 0.96 (0.77-1.19)	0.81 (0.66-0.99) 0.88 (0.68-1.12)	4.05* 1.13

(Braga et al., Cancer 1998)

Olive oil and upper digestive tract cancers

Concer		χ^2 trend			
Cancer	2	3	4	5	
Oral/pharyngeal					
Olive oil	0.6 (0.4-0.9)	0.7 (0.5-1.1)	0.7 (0.5-1.1)	0.4 (0.3-0.7)	7.15
Mixed seed oils	0.7 (0.5-1.1)	1.0 (0.7-1.4)	0.9 (0.6-1.3)	1.1 (0.7-1.7)	0.12
Butter	1.2 (0.8-1.8)	1.3 (0.8-1.9)	1.8 (1.2-2.7)	2.3 (1.6-3.5)	22.32
Esophageal					
Olive oil	0.3 (0.2-0.6)	0.3 (0.5-1.2)	0.3 (0.4-1.0)	0.3 (0.3-0.7)	9.98
Mixed seed oils	0.7 (0.4-1.2)	0.8 (0.5-1.3)	0.8 (0.5-1.4)	0.4 (0.2-0.8)	1.41
Butter	1.6 (0.9-2.7)	1.7 (1.0-2.9)	1.5 (0.9-2.6)	2.2 (1.3-3.7)	4.66
Laryngeal					
Olive oil	0.6 (0.4-0.9)	0.8 (0.5-1.2)	0.6 (0.4-1.0)	0.4 (0.3-0.7)	8.62
Mixed seed oils	1.3 (0.8-2.1)	1.8 (1.1-2.9)	2.6 (1.6-4.1)	2.2 (1.3-3.5)	16.16
Butter	1.4 (0.9-2.2)	1.0 (0.6-1.5)	1.4 (0.9-2.1)	0.9 (0.6-1.4)	0.33

(Franceschi et al, 1999; Bosetti et al, 2000; Bosetti et al 2002)

Olive oil and cancer risk

Large and multricentric Italian studies showed that olive oil is a favourable indicator of breast, ovarian, colorectal, but mostly of upper digestive and respiratory tract cancers.

Olive oil and cancer risk

In terms of potential biologic mechanisms, it is not clear whether such activity is due to oleic acid itself or to the presence of other antioxidants, such as vitamin E and polyphenols, in olive oil.

The observed associations may not be due to specific components of olive oil, but to the fact that olive oil indicators of healthier dietary habits

An *a priori* defined score, summarising eight of the major characteristics of the Mediterranean diet, was applied to data of case-control studies of oral, oesophageal and laryngeal cancers

2 2 3	Cancer, QR ^a (95% CI)				
	Oral/pharyngeal	Oesophageal	Laryngeal		
Monounsaturated/saturated fat	0.72 (0.56-0.93)	0.73 (0.51-1.01)	0.97 (0.73-1.28)		
Alcohol	4.26 (3.11-5.83)	6.04 (3.79-9.62)	2.77 (2.01-3.83)		
Legumes	1.09 (0.87-1.38)	1.03 (0.74-1.42)	0.75 (0.58-0.98)		
Cereals	0.77 (0.59-1.00)	0.96 (0.667-1.38)	0.92 (0.68-1.24)		
Fruit	1.06 (0.83-1.35)	0.95 (0.68-1.31)	0.82 (0.62-1.07)		
Vegetables	0.79 (0.62-1.01)	0.72 (0.51-1.01)	0.51 (0.39-0.67)		
Meat and meat products	1.42 (1.11-1.81)	1.50 (1.06-2.13)	1.53 (1.15-2.04)		
Milk and dairy products	1.09 (0.86-1.40)	1.24 (0.87-1.75)	1.07 (0.81-1.42)		

(Bosetti et al., 2003)

	Mediterranean diet score (number of characteristics)				
	<3	4	≥6		
Oral/pharyngeal					
Cases/controls	214/241	120/376	41/201		
OR (95% CI)	1	0.41 (0.30-0.57)	0.40 (0.26-0.62)		
Oesophageal					
Cases/controls	102/147	66/174	14/83		
OR (95% CI)	1	0.63 (0.41-0.95)	0.26 (0.13-0.51)		
Laryngeal					
Cases/controls	183/225	98/279	19/124		
OR (95% CI)	1	0.47 (0.33-0.66)	0.23 (0.13-0.40)		

(Bosetti et al., CEBP 2003)

An *a priori* defined nutritional pattern, which includes several aspects of the Mediterranean diet, favourably affects the risk of cancers of the upper aerodigestive tract

Conclusions (1)

A low risk diet for cancer would not only imply increasing fruit and vegetables, avoiding red meat, but also prefer whole grain carbohydrates to refined ones, and olive oil and other unsaturated fats to saturated ones.

CONCLUSIONS (2)

This also helps control of body weight, which is a priority in cancer prevention

Fats

In the EPIC cohort an association between high saturated fat intake and greater breast cancer risk was found (RR 1.13, 95% CI: 1.00, 1.27) for the highest quintile of saturated fat intake compared with the lowest quintile.

(Sieri et al, Am J Clin Nutr 2008)

RED MEAT consumption - Relative risk of various cancers. Italy, 1983-1997

(Tavani et al., Int J Cancer 2000)

FISH consumption - Relative risk of various cancers. Italy, 1983-1997

(Fernandez et al., Am J Clin Nutr 1999)

40