

ESMO Symposium on Nutrition Zurich, March 2009

Evaluation of the nutritional status of a cancer patient

The basic science of weight loss: What should oncologists know?

Prof. Dr. Josep M. Argilés
Departamento de Bioquímica y Biología
Molecular
Universidad de Barcelona

Cancer and nutrition

marked weight loss, anorexia, asthenia and anemia

Normal

Mild weight loss anorexia

Moderate weight loss anorexia

Severe weight loss anorexia

Metabolic changes

Reduced activity

Muscle wasting obvious

Death

Reduced survival

CACHEXIA

Source: DeWys et al. Am.J.Med. 69: 491 (1980)

A problem of energy balance

Anorexia

Reduced food intake

Metabolic alterations

Increased energy expenditure

TOTAL ENERGY EXPENDITURE (TEE)

BASAL METABOLIC RATE
(REE)
DIET-INDUCED THERMOGENESIS
(DIT)
PHYSICAL ACTIVITY
(PA)

TEE = REE + DIT + PA

TOTAL ENERGY EXPENDITURE (TEE)

PA

DIT

REE

PA

DIT

REE

Cancer

Healthy

FUTILE CYCLE ACTIVITY

TUMOUR

INCREASED THERMOGENIC ACTIVITY

UCP1 ACTIVITY IN BAT

OTHER UCPs (?)

Cori cycle (Tumour-Liver)

Liver

- 6 ATP

Tumour

+2ATP

Energetic balance = - 2 ATP

The UCP Family

UCP1 Brown adipose tissue (BAT) UCP2 Ubiquitous

UCP3 Skeletal muscle and BAT

UCP4 Neural tissues

UCP5 Neural tissues (BMCP-1)

Multiorgan syndrome Systemic disorder

The Cachexia Pyramid

Mechanisms

Anorexia

Molecules involved in cancer anorexia??

Cytokines
Circulating hormones
Neuropeptides
Neurotransmiters
Amino acids
Tumour-derived factors

Metabolic alterations

Skeletal muscle

CANCER CACHEXIA

PROTEIN

AMNOAGDS

Ubiquitin mRNA levels in skeletal muscle of gastric cancer patients

Patients lost 5.57% of body weight (n= 20)

Bossola et al. American Journal of Physiology 280: R1518-R1523 (2001)

Apoptosis

Apoptosis in gastro-intestinal cancer patients

Figure 1 Skeletal muscle apoptosis in cancer patients. For further details, see the Materials and methods section. DNA fragmentation was assessed by monitoring the laddering in an agarose gel. The results are expressed as % of DNA fragmentation. The results are mean values \pm S.E.M. of a minimum of five samples. C+: 40 μ g of liver DNA from anti-Fas-treated mice (positive control). C: control group, CAN: cancer patients. Values that are significantly different by the Student's *t*-test from the non tumour-bearing patients are indicated by ${}^{**}p < 0.01$.

Fig. 1. Caspase-3: apoptosis and protein degradation signalling.

Mediators

Signaling

SIGNALS

TRANSDUCTION PATHWAYS ???

EFFECTS

MUSCLES

LIVER

Fig. 2. The role of PI3K in signalling protein turnover in skeletal muscle.

Intervention?

Developing cancer-specific nutritional approaches

Objectives

Increase body weight Stimulate food intake Decrease inflammation Decrease energy expenditure Enhance absorption/Gastric emptying **Preserve LBM (anabolic + anticatabolic) Enhance QoL Control cancer Promote health**

Thank you!