Why do patients take herbs and nutritional supplements?

- **Dissatisfaction with conventional medicine**
 - Relieve cancer-related symptoms
 - Treat adverse effects of anticancer drugs
 - Treat cancer
 - Promote general well being
- **More active in own health care**
- **Philosophical orientations**
Use in cancer survivors

- 54-81%: any vitamins or supplements
- 26-77%: multivitamins
- Within first months of diagnosis
- Women
- Higher economic status

20-30% adverse effects < drug interactions
Concomitant use: growing concern
Communication disconnect

38-85%: no consultation with physician

- Physicians do not ask
- Physicians do not record
- Patients fear disapproval
Drug interactions

- **Drug-drug**
 - Food, nutritional supplements, formulation excipients, environmental factors

- **Interactions**
 - Pharmacokinetics
 - Absorption, distribution, metabolism, elimination
 - Pharmacodynamics
 - Similar molecular targets
 - Opposite effects
 - Similar effects
Drug interactions: clinical relevance

Depends on

- **Co-administered drug**
 > Dose, dosage regimen, therapeutic range
 > Administration route, pharmacokinetics

- **Herb**
 > Dose, dosage regimen
 > Administration route

- **Patient**
 > Genetic polymorphism
 > Age, gender
 > Co-morbid conditions
Pharmacokinetics: absorption

Oral drugs and pro-drugs

• **Food**
 > Delays gastric emptying
 > Raises intestinal pH
 > Raises hepatic blood flow
 > Slows gastrointestinal transit

• **Known drug interactions**
 > Increases absorption erlotinib
 > Decreases absorption capecitabine
 > Delays absorption topotecan, fluorouracil
Pharmacokinetics: absorption, metabolism, elimination

- **Cytochrome 450 family CYP450**
- **Drug transporters**
 - Efflux: P-glycoprotein P-gP
 - Influx: organic anion transporting polypeptide OATP
Pharmacokinetics: absorption, metabolism, elimination
Pharmacokinetics: absorption, metabolism, elimination

The CYP family

- **Metabolizes 60% of drugs**
 - Biotransformation lipophilic substrates into hydrophilic metabolites
- **CYP3A4**
 - Most abundant
 - Liver, gastrointestinal tract
 - Chemical carcinogenesis
- **Expression regulation**
 - Hormones and nuclear receptors
 - Pregnane X receptor, constitutive androstane receptor, farnesol X receptor
Pharmacokinetics: absorption, metabolism, elimination

Anticancer drugs: substrates of CYP3A4

- **Hormones**
 - Anastrazole, letrozole, exemestane, tamoxifen
- **Tyrosine kinase inhibitors**
 - Erlotinib, gefinitib, imatinib
- **Taxanes**
 - Docetaxel, paclitaxel
- **Vinca alkaloids**
 - Vinblastin, vincristin, vinorelbine
- **Topo-isomerase inhibitors**
 - Doxorubicine, irinotecan, etoposide, teniposide
- **Alkylating agents**
 - Cyclophosphamide, iprophosphamide
Pharmacokinetics: absorption, metabolism, elimination

- **P-glycoprotein P-gp**
 - Encoded by multidrug resistance genes ABCB1
 - Liver, kidney, intestines, brain, testis, uterus, adrenal gland, tumor cells
 - Up-regulation by stress responses
 - Cytotoxic agents, heat shock, irradiation, inflammatory mediators, cytokines, growth factors
 - Hepatic P-gp: 2.4 fold lower in women
Pharmacokinetics: absorption, metabolism, elimination

- **Anticancer substrates of P-gP**
 - Tyrosine kinase inhibitors
 - **Imatinib**
 - Taxanes
 - **Docetaxel, paclitaxel**
 - Vinca alkaloids
 - **Vinblastin, vincristin**
 - Topo-isomerase inhibitors
 - **Doxorubicine, irinotecan, etoposide, teniposide, topotecan**
Pharmacokinetics: absorption, metabolism, elimination

- **Organic anion transporting polypeptide OATP**
 - Protein family
 - Influx into plasma
 - Regulated by small intestinal pH
Pharmacokinetics: absorption, metabolism, elimination

Herbal supplements: brand specific effects

- **Garlic**
 - Inhibition of CYP3A4, inducer in very high doses
- **Gingko**
 - Inhibition of CYP3A4, inducer of CYP2C19
 - CYP2C19 substrates: letrozole, gefinitib
- **Valerian**
 - Inhibition of CYP2C19, CYP2D6
 - CYP2D6 substrate: tamoxifen
Pharmacokinetics: absorption, metabolism, elimination

- **Echinacea**
 - Inhibitor intestinal CYP3A4
 - Inducer CYP3A4

- **Ginseng**
 - Moderate inhibitor hepatic CYP3A4

- **Grape seed**
 - In high doses: inducer of hepatic CYP3A4

- **Kava**
 - Pregnane X receptor activator

- **St John’s Worth**
 - Potent inducer of CYP3A4 and P-gp
 - Activator pregnane X receptor
Pharmacokinetics: absorption, metabolism, elimination

- **Grape fruit**
 > Potent inhibitor intestinal CYP3A4
 > inhibitor P-gp and OATP

- **Black pepper**
 > Inhibitor of CYP3A4, P-gp

- **Seville orange**
 > Inhibition of CYP3A4, P-gp, OATP

- **Goldenseal**
 > Inhibition of CYP3A4, CYP2D6

- **No interaction with**
 > Saw palmetto, black cohosh, cranberry, bilberry, milk thistle
Pharmacokinetics: distribution

- **Binding properties**
 > Albumin, alpha-1-acid glycoproteins, lipoproteins, immunoglobulines, erythrocytes

- **Highly bound anticancer drugs**
 > Paclitaxel, etoposide

- **Competitive binding with albumin**
 > Evening primrose
Pharmacodynamics

- **Synergistic interactions**
 > Leucovorin and 5-fluorouracil

- **Antagonistic interactions**
 > Corticosteroids and IL-2

- **Additive interactions**
 > Vinorelbine with previous or concurrent paclitaxel on neurotoxicity

- **Sequence-dependent interactions**
 > Paclitaxel preceding doxorubicine on cardiotoxicity
Drug interactions: clinical relevance?

- Drugs: narrow therapeutic range
- Drugs: steep dose-response curve
- Potent inhibitor of inducer
- Metabolism and elimination: single pathway
- Interactions results in diversion into alternative pathway
Antioxidants and anticancer drugs

• **Lower antioxidant status**
 > Cancer
 > Anticancer treatment

• **Supplements**
 > Selenium
 > Vitamin C
 > Sufficient fruit and vegetables
Antioxidants and anticancer drugs

- **Antioxidants**
 - Detoxifying free radicals
 - Inhibition of free radical intermediates
 - Mitomycin C, bleomycin
 - Strong nucleophiles
 - Reducing adverse effects
 - Glutathion
 - Coenzyme Q10
- **High level antioxidant stress**
 - Anthracyclines, alkylating agents, platinum, camptothecins, epipodophylotoxines
Antioxidants and anticancer drugs

- **Vitamin E**
 - Prevents peroxidation poly-unsaturated fat
 - Evidence not strong
 - Radiation fibrosis
 - Mucositis chemotherapy
 - Cell growth inhibition by 5-FU
 - Pro-oxidant: cigarette smokers + fatty acid diet
 - Avoid depletion

- **ß-Carotene**
 - Few and fragmentary studies
 - Beneficial during chemo- and radiotherapy?
Antioxidants and anticancer drugs

- **Selenium**
 - Selenoproteins: glutathion peroxidase
 - Insufficient data
 - Adverse effect chemo- and radiotherapy
 - Cisplatin resistance in ovarian cancer
 - Narrow dose range

- **Vitamin C**
 - Excessive quantities: pro-oxidants
 - High dose methotrexate + high dose vitamin C: renal insufficiency

No data on survival
Conclusions

Be aware

- **Avoid**
 - Grape fruit and St John’s Worth

- **Caution with**
 - Gingko, ginseng, echinacea, kava, grape seed: CYP3A4 substrates
 - Gingko: letrozole, gefinitib
 - Valerian (paroxetine, fluoxetine): tamoxifen
 - Evening primrose: paclitaxel, bleomycin

- **No antioxidants**
 - Mitomycin C, bleomycin

- **Avoid antioxidant depletion**
 - Vitamin E
Conclusions

• **Studies should specify**
 > Dosage
 > Duration
 > Time interval
 > Life style
 > Exposure to carcinogens

• **In a well-defined population**