Discovery and Development of Next Generation Epigenetic DNMT Inhibitors: Development of SGI-110, a novel DNMT inhibitor

9th International Symposium on Targeted Anticancer Therapies
March 7 – 9, 2011
Paris, France

Jean-Pierre Issa, MD
University of Texas, M.D. Anderson Cancer Center
I have the following financial relationships to disclose:

- Consultant for: *GSK, Syndax*
- Speaker’s Bureau for: NA
- Grant/Research support from: *Eisai, Celgene, Merck, Supergen*
- Stockholder in: NA
- Honoraria from: *Celgene, Novartis, Johnson & Johnson*
- Employee of: NA

I will discuss off label use and/or investigational use in my presentation.
Epigenetics

• Mitotically stable changes in gene expression, thought to be irreversible
• Differentiation, stem cells vs. committed cells, X-inactivation, imprinting, germ cell restriction
• Phenotypic differences

The epigenome: Signals that are necessary (?) sufficient) to establish and/or perpetuate an epigenetic state; DNA methylation, histone marks

Evidence for Cancer as an Epigenetic Disease

• The marks are abnormal: DNA methylation and histone patterns
 • Variable in different cancers
 • Affect critical genes
• The readers/writers are genetically targeted in some cancers
 • DNA methylation regulators (DNMT3a, TET2, ? IDH1/2)
 • Histone modifiers (MLL1-3, UTX2, EZH2 etc.)
 • Chromatin regulators (SNF5 etc.)
Epigenetic Silencing Mechanisms

DNA Methylation and Histone H3-K9 Methylation Dependent Gene Silencing Loop

- DNA methylation
- DNA Methyl Binding Protein binding
- Recruitment of HDAC
- Recruitment of HMT
- Histone H3-K9 Methylation
- Recruitment of DNMT
- Recruitment of HP1
- Histone H3-K27 Tri-Methylation

Histone H3-K27 Tri-Methylation Dependent Gene Silencing

- Recruitment of PcG (e.g. PRC2)
 - HDAC
 - EZH2
- Histone H3-K27 Tri-Methylation
- Recruitment of PcG (e.g. PRC1)
- Gene silencing

Yutaka Kondo, Cancer & Metastasis Rev., 2007
<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Trade Name</th>
<th>Mechanism of Inhibition</th>
<th>Clinical Trials (Cancer)</th>
<th>FDA Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-aza-2’-deoxycytidine SuperGen</td>
<td>Dacogen</td>
<td>DNMT; incorporation into DNA (IV delivery)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5-azacytidine Celgene</td>
<td>Vidaza</td>
<td>DNMT; incorporation into RNA & DNA (IV delivery)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Decitabine dinucleotide SuperGen</td>
<td>SGI-110</td>
<td>DNMT (SC delivery)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Zebularine (NCI)</td>
<td></td>
<td>DNMT (oral delivery)</td>
<td>No (preclinical)</td>
<td>No</td>
</tr>
<tr>
<td>Procainamide</td>
<td></td>
<td>Unknown (CpG-rich sequences?)</td>
<td>No (preclinical)</td>
<td>Yes (antiarrhythmic)</td>
</tr>
<tr>
<td>Procaine</td>
<td></td>
<td>Unknown (CpG-rich sequences?)</td>
<td>No (preclinical)</td>
<td>Yes (anesthetic)</td>
</tr>
<tr>
<td>Hydralazine</td>
<td></td>
<td>Unknown (DNMTs and other enzymes?)</td>
<td>Yes</td>
<td>Yes (vasodilator)</td>
</tr>
</tbody>
</table>
Epigenetic Therapy: Clinical Results

• DNA methylation inhibitors
 • Response rates of 10-70% in MDS, AML and CML; Side-effects primarily myelosuppression
 • Prolong survival in MDS compared to supportive care or chemotherapy
 • Anecdotal responses in solid tumors – response rate not well defined yet

Issa, CCR 2009
Decitabine

• Hypomethylation is induced in nearly every patient
 • Only sustained hypomethylation correlates with response

• Gene expression induction is variable
 • Correlates with response
Hypomethylation After Decitabine

Days
\[\text{p15 methylation \%} \]

\[\text{P15/CDKN2B} \quad \text{MiR124a} \]

% Change in Methylation

Oki, Blood 2007; Castoro, submitted
Gene Induction After Decitabine

P15/CDKN2B

- CR
- non-CR

MiR124a

Oki, Blood 2007; Castoro, submitted
SGI-110: Background

- Decitabine is a potent, well-characterized hypomethylating agent.
- Lacks optimal drug stability: rapidly eliminated in plasma by Cytidine Deaminase (CDA). This limits drug exposure time to cancer cells \textit{in vivo}.
- SGI-110 was designed to increase the \textit{in vivo} efficacy of decitabine by incorporating it into a guanine dinucleotide.
SGI-110 Structure

• Dinucleotide of Decitabine and Deoxyguanosine
SGI-110 Improves Stability of Decitabine

- Increases half-life
- Improves bioavailability
- Lowers dose requirement
- Prevents degradation by CDA

Stability of S110 vs. Decitabine

Fig 2: (A) Recombinant CDA (0.1 unit) incubated with decitabine or S110 (0.2 mmol/L) at 38°C, and percent substrate remaining determined by HPLC. (B) Compounds incubated at 37°C in PBS, and absorbance of each measured over time.

Plasma stability

Fig 5: Stability of S110 and decitabine over time in human serum. PNPP and Eucatropine are assay controls.

SGI-110: Better Formulation Development

- Two-vial kit – “Ready to Reconstitute” product
- Easy reconstitution and solubility
- Designed for SQ injection
- Safe composition: all excipients are GRAS
- Very small Injection volume: 100 mg/mL
- Stability: solution stable for 1 month

<table>
<thead>
<tr>
<th></th>
<th>SGI-110 Lyophile reconstituted with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Water For Injection</td>
</tr>
<tr>
<td>SGI-110 solubility in diluent</td>
<td>~20 mg/mL</td>
</tr>
<tr>
<td>Injection volume, @ 25 mg dose given subcutaneously</td>
<td>> 1 mL</td>
</tr>
<tr>
<td>Stability of reconstituted solution</td>
<td>Unstable, degrades even at refrigerated conditions</td>
</tr>
<tr>
<td></td>
<td>Non-aqueous formulation</td>
</tr>
<tr>
<td></td>
<td>~130 mg/mL</td>
</tr>
<tr>
<td></td>
<td>< 1 mL</td>
</tr>
</tbody>
</table>

- Stable solution formed
SGI-110 Improves Tolerability * *

In Vivo

![Graph showing percent weight loss over days with Decitabine and SGI-110.]

- Concentration value of SGI-110 given in molar equivalent of Decitabine.
- (6 mice dosed 3 times weekly IV)

Chuang et al. 2010 Molecular Cancer Therapeutics
Sustained Hypomethylation, Less Frequent Administration

Methylation Results in Monkeys
(Weekly SQ Regimen on D1, D8, D15)

- Significant decrease (p<0.05) in global methylation with once weekly dosing for up to 4 weeks
- Recovery trend 14 days after third dose
SGI-110 vs Decitabine: Methylation in Monkeys 5-Day regimen

Similar or better hypomethylation with SGI-110 at lower doses
SGI-110 vs Decitabine: Hematology in Monkeys
5-Day regimen

Less hematological suppression with SGI-110 at lower doses
Better Antitumor activity of SGI-110 in Solid Tumors Cisplatin-Resistant Ovarian Xenografts (A2780/CP70)

![Graph showing tumor size over days for different treatments.]

- **Vehicle (PBS, IP, Q7D)**
- **Cisplatin (6 mg/kg, IP, BIW)**
- **Decitabine (5 mg/kg IP, Q7D)**
- **SGI-110 (12.2 mg/kg IP, Q7D)**

equal molar concentration
A Phase 1, Dose Escalation, Multicenter Study of Two Subcutaneous Regimens of SGI-110, a DNA Hypomethylating Agent, in Subjects with Intermediate-2 or High-Risk Myelodysplastic Syndromes (MDS) or Acute Myelogenous Leukemia (AML)
Study Design

• Multicenter
• Open Label, Randomized, Dose Escalation and Dose Expansion Segments (PK-PD Adaptive Escalation)
• Primary Objectives:
 - **Dose Escalation Segment**
 Population: Relapsed or refractory intermediate-2 or high-risk MDS or relapsed or refractory AML patients
 - Determine safety profile, including DLT’s
 - Determine the dose and regimen(s) for the dose expansion segment
 - Determine MTD or Biologically Effective Dose (BED)
 - **Dose Expansion Segment**
 Population: Relapsed or refractory MDS and AML (as above) and Treatment naïve MDS and Treatment naïve elderly AML (≥65 yrs)
 - Treatment naïve AML subjects must also meet additional specific entry criteria
 - Evaluate the activity of SGI-110 as measured by overall remission rate
Study Design

Relapsed or Refractory Intermediate-2 to High Risk MDS or Relapsed or Refractory AML; ECOG PS 0–2

Regimen 1
Daily SC Days 1–5 of a 28-day course

Regimen 2
Weekly SC x 3 of a 28-day course

PK – PD Assessments
C_{max}, AUC, Global Hypomethylation, Gene Re-Expression Studies

Escalation to Optimal Biological Effective Dose (BED) OR Maximum Tolerated Dose (MTD)
Study Design – Unique Features

• Randomization between 2 schedules

• Rapid dose escalation based on pharmacokinetics of both SGI-110 and decitabine

• Dose escalation stops at MTD or Biologically Effective Dose (whichever comes first)

• BED defined based on hypomethylation induction (LINE1, P15, miR124) and gene activation (P15, miR124)
Trial Status Update

As of 7 March 2011

• 3 active sites (MDACC, USC, Cornell)
• First Cohort Regimen 1 and Regimen 2 fully enrolled
 • No DLTs; PK allows further escalation
• Cohort 2 opened 02 Mar 2011
 • Two subjects in Cohort 2 dosed
 • One additional subject consented

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>AML</th>
<th>MDS-Int 2</th>
<th>MDS-HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Daily</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Next Generation DNMT Inhibitor
SGI-110 Summary

• Intelligent design of a nucleotide for better more stable release of decitabine in vivo
• Several areas of potential improvement (based on preclinical data):
 - More convenient low volume SQ formulation
 - Less frequent administration
 - Sustained hypomethylation
 - Potential improvement in efficacy and/or safety
 - Potential development in solid tumors
 - Potential development as immunotherapy
• Clinical Phase I/II trial initiated
Acknowledgments

Jean Pierre Issa, MD
Gail Morris, RN
Cora Chang, RN

Casey O’Connell, MD
Anthoney El Khoueiry, MD
Lori Vergara, RN,
Ibrahim Sayed

Gail Roboz, MD
Eric Feldman, MD
Ellen Ritchie, MD
Tania Curcio, RN
Laura Sutter

Peter Jones, PhD
Steve Baylin, MD

Mohammad Azab, MD
Ursula McCurry
Pietro Taverna, PhD
Sanjeev Redkar, PhD
Jason Scholl, PhD
Gavin Choy, PharmD