

TARGETING HYPOXIA INDUCIBLE FACTOR 1 (HIF-1) To OVERCOME RESISTANCE TO ANTIANGIOGENIC THERAPY

Giovanni Melillo, M.D.

Developmental Therapeutics Program
SAIC Frederick, Inc.
National Cancer Institute
Frederick, Maryland
melillog@mail.nih.gov

Targeted Anticancer Therapies (TAT) meeting Paris, France, March 7-9, 2011

Hypoxia is a hallmark of the tumor microenvironment

Challenges associated with targeting HIF-1 for cancer therapy

- Lack of specific small molecule inhibitors of HIF-1
- Essential to validate HIF-1α inhibition in tumor tissue.
- Need for PD endpoint or biomarkers associated with HIF-1 inhibition.
- Single agent HIF-1 inhibition may have limited therapeutic impact.

Anticancer agents with potential HIF-1 inhibitory activity

(agents approved or in clinical development are indicated in white)

A target-driven pilot trial of oral Topotecan as an inhibitor of HIF-1a in advanced solid tumors.

Baseline biopsy After 2 cycles

Synergistic Antitumor Activity of HIF-1 inhibition in Combination with Bevacizumab

Supra P. et al. Clin. Can. Res. 2008

A Pilot Study of Weekly EZN-2208 (Pegylated SN-38) in Combination With Bevacizumab in Refractory Solid Tumors

PRIMARY OBJECTIVE:

• HIF-1α protein levels by ELISA

SECONDARY OBJECTIVES:

- Safety and tolerability
- Correlative studies (Angiogenesis)
- Antitumor activity

Conclusions

- Evidence of HIF- 1α inhibition in tumor tissue is essential to validate this pharmacological approach.
- Combination strategies may be more effective in targeting HIF-1α expression in tumor tissue. A pilot clinical trial of EZN-2208 + bevacizumab ongoing at the National Cancer Institute.
- Identification of signaling pathways that are essential for survival of hypoxic cancer cells may provide novel therapeutic opportunities.

Identification of novel pathways contributing to tumorigenicity of hypoxic cancer cells

Anchorage-independent growth

- IL-11 is a 199 aa (21 KDa) protein that belongs to the IL-6 family of cytokines
- It signals through the gp130R and a specific IL-11R α , activating STAT3
- IL-11 stimulates thrombopoiesis and osteoclast activity
- IL-11 has been recently implicated in linking inflammation to cancer in the gastrointestinal tract
- High levels of IL-11Rα have been reported in osteosarcoma
- Its role in cancer is poorly characterized

IL-11 is a novel hypoxia inducible and VHL-regulated gene

PC-3

RCC4

Does IL-11 silencing affect tumor growth in vivo?

Delayed in vivo growth of IL-11 KD cells

Acknowledgments

Tumor Hypoxia Lab

Nicole Fer Barbara Onnis Annamaria Rapisarda Victor Perez

Former members:

Uranchimeg Badarch Maura Calvani Dehe Kong Frika Terzuoli

• Developmental Therapeutics Program, NCI:

Robert H. Shoemaker

Dominic A. Scudiero (SAIC)

• Xenografts/Imaging:

Melinda Hollingshead

Laboratory of Pharmacology/ Toxicology:

Robert J. Kinders (SAIC) Ralph Parchment (SAIC)

Clinical trials:

Shivaani Kummar Alice Chen Anthony Murgo James H. Doroshow

- Laboratory of Pathology, CCR,NCI Mark Raffeld
- Functional Imaging:

Pete Choyke Baris I. Turkbey