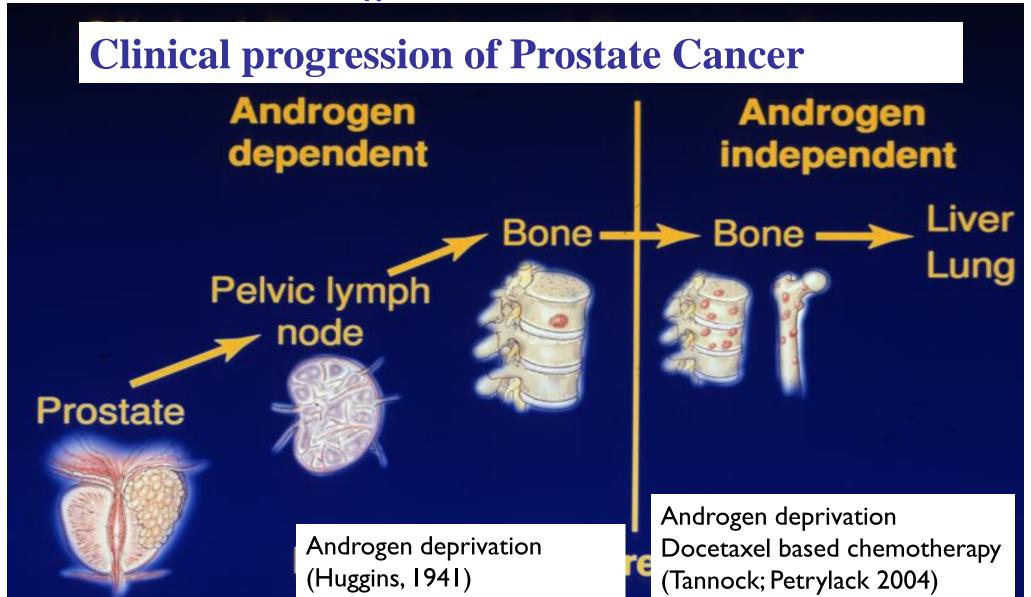

Tubulin-binding drug In prostate cancer

Dr Christophe Massard

Institut Gustave Roussy, Department of Cancer Medicine christophe.massard@igr.fr


TAT Meeting, Paris, 2011

Chemotherapy in Prostate Cancer before 2010...

Docetaxel based chemotherapy in CRPC

❖ New tubulin agent in CRPC: Cabazitaxel

Other drugs and Combination therapy

Strategy in prostate cancer (early stage)

Perspectives

Docetaxel based chemotherapy in CRPC: TAX 327 and SWOG 9916

TAX 327

Mitoxantrone 12 mg/m² q 21 days

Prednisone 5 mg po bid

Docetaxel 75 mg/m² q 21 days

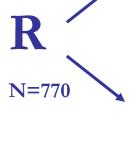
Prednisone 5 mg po bid

Dexamethasone 8 mg 12, 3 and 1 hour

prior to D

N = 1006

Docetaxel 30 mg/m² /wk 5 of 6 wks

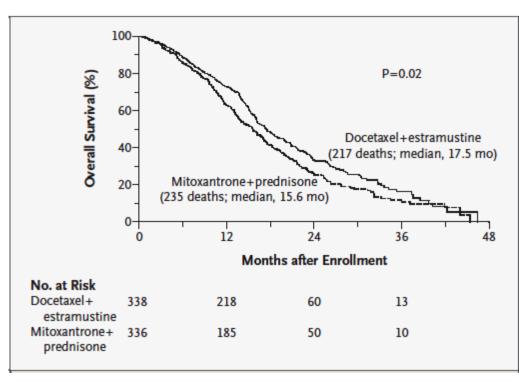

Prednisone 5 mg po bid

Dexamethasone 8 mg 1 hour prior to D

SWOG 9916

Mitoxantrone 12 mg/m² q 21 days Prednisone 5 mg po bid

Docetaxel 60 mg/m² IV J2/3 weeks
Dexamethasone 20 mg x3/d


Docetaxel based chemotherapy in CRPC: Overall Survival

TAX 327

100 Probability of Overall Survival (%) 80-70-50-Docetaxel every 3 wk docetaxe Months No. at Risk Docetaxel every 335 217 104 3 wk Weekly docetaxel 334 297 200 105 29 29 Mitoxantrone 297 192

Median OS: 18.9 months vs. 16.5 months HR: 0.76 (0.62-0.94)

SWOG 9916

Median OS: 17.5 months vs. 15.6 months

HR: 0.80 (0.67-0.97)

Petrylak DP, et al: NEJM 351:1513-20, 2004

Chemotherapy works! Arising questions

- What to do when docetaxel eventually fails?
- Docetaxel alone or in combination (estramustine)?
- Early (asymptomatic) or late (symptomatic) chemotherapy?

Docetaxel based chemotherapy in CRPC

❖ New tubulin agent in CRPC: Cabazitaxel

Other drugs and Combination therapy

Strategy in prostate cancer (early stage)

Perspectives

Mitoxantrone after first line Docetaxel

Author	Response rate
Michels (n=35)	15%
Oh (n=35)	6% (PFS: 6 weeks)

Cabazitaxel: A Next-Generation Taxane

- New semi-synthetic taxane
 - → Selected to overcome the emergence of taxane resistance
 (poor affinity for drug efflux pomp)
 - → Microtubule stabilizer
- Preclinical data
 - → As potent as docetaxel against sensitive cell lines and tumor models
 - → Activity against tumor cells and tumor models that are resistant to taxanes

Phase I and Pharmacokinetic Study of XRP6258 (RPR 116258A), a Novel Taxane, Administered as a 1-Hour Infusion Every 3 Weeks in Patients with Advanced Solid Tumors

Alain C. Mita, ¹Louis J. Denis, ¹Eric K. Rowinsky, ¹Johann S. DeBono, ¹Andrew D. Goetz, ¹Leonel Ochoa, ¹Bahram Forouzesh, ¹Muralidhar Beeram, ¹Amita Patnaik, ¹Kathleen Molpus, ¹Dorothée Semiond, ²Michèle Besenval, ² and Anthony W. Tolcher ¹

- Clinical data
 - → DLT was neutropenia
 - → Antitumor activity in taxane resistant CRPC
 - → No phase II data in CRPC

Cabazitaxel + prednisone (CBZP) versus mitoxantrone
+ prednisone (MP) in the treatment of metastatic castration-resistant prostate cancer
(mCRPC)
previously treated with a docetaxel-based regimen

Final Results of the Phase III TROPIC Trial

Oliver Sartor, MD

Piltz Professor of Cancer Research
Tulane University School of Medicine
New Orleans, USA

Johann de Bono, MD, PhD

Reader in Experimental Cancer Medicine
The Institute of Cancer Research
The Royal Marsden Hospital
Surrey, UK

On behalf of the TROPIC Investigators

TROPIC: Phase III Registration Study 146 Sites in 26 Countries

mCRPC patients who progressed during and after treatment with a docetaxel-based regimen (N=755)

Stratification factors

ECOG PS (0, 1 vs. 2) • Measurable vs. non-measurable disease

cabazitaxel 25 mg/m² q 3 wk + prednisone* for 10 cycles (n=378)

*Oral prednisone/prednisolone: 10 mg daily.

Primary endpoint: OS

Secondary endpoints: Progression-free survival (PFS), response rate, and safety

mitoxantrone 12 mg/m² q 3 wk + prednisone* for 10 cycles (n=377)

Inclusion: Patients with measurable disease must have progressed by RECIST; otherwise must have had new lesions or PSA progression

Patients characteristics

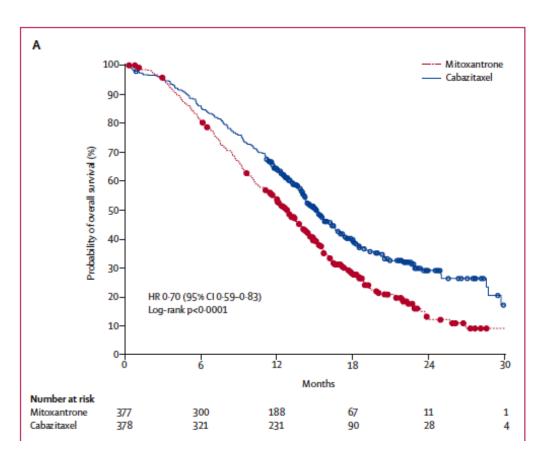
	Mitoxantrone (n=377)	Cabazitaxel (n=378)
Age	,,	, ,
Median (years)	67 (61-72)	68 (62-73)
≥75 years	70 (19%)	69 (18%)
Ethnic origin		
White	314 (83%)	317 (84%)
Asian	32 (8%)	26 (7%)
Black	20 (5%)	20 (5%)
Other	11 (3%)	15 (4%)
ECOG performance status 0 or 1	344 (91%)	350 (93%)
Extent of disease		
Metastatic	356 (94%)	364 (96%)
Bone metastases	328 (87%)	303 (80%)
Visceral metastases	94 (25%)	94 (25%)
Locoregional recurrence	20 (5%)	14 (4%)
Unknown	1 (<1%)	0
Median serum PSA concentration (µg/L)*	127-5 (44-0-419-0)	143·9 (51·1-416·0)
Serum PSA concentration ≥20 µg/L	325 (86%)	329 (87%)
Measurable disease	204 (54%)	201 (53%)
Pain at baseline†	168 (45%)	174 (46%)

Previous therapy						
Hormonal‡	375 (99%)	375 (99%)				
Number of chemotherapy regimens						
1	268 (71%)	260 (69%)				
2	79 (21%)	94 (25%)				
>2	30 (8%)	24 (6%)				
Radiation	222 (59%)	232 (61%)				
Surgery	205 (54%)	198 (52%)				
Biological agent	36 (10%)	26 (7%)				
Number of previous docetaxel regime	ens					
1	327 (87%)	316 (84%)				
2	43 (11%)	53 (14%)				
>2	7 (2%)	9 (2%)				
Total previous docetaxel dose (mg/m²)	529-2 (380-9-787-2)					
Disease progression relative to doceta	xel administration	1				
During treatment	104 (28%)	115 (30%)				
<3 months from last dose	181 (48%)	158 (42%)				
≥3 months from last dose	90 (24%)	102 (27%)				
Unknown	2 (1%)	3 (1%)				
Median time from last docetaxel dose to disease progression (months)	0-7 (0-0-2-9)	0-8 (0-0-3-1)				

Most Frequent Grade ≥3 Treatment-Emergent AEs* Safety Population

	Mitoxantrone (n=371)		Cabazitaxel (r	1=371)
	All grades	Grade ≥3	All grades	Grade ≥3
Haematological†				
Neutropenia	325 (88%)	215 (58%)	347 (94%)	303 (82%)
Febrile neutropenia		5 (1%)	••	28 (8%)
Leukopenia	343 (92%)	157 (42%)	355 (96%)	253 (68%)
Anaemia	302 (81%)	18 (5%)	361 (97%)	39 (11%)
Thrombocytopenia	160 (43%)	6 (2%)	176 (47%)	15 (4%)
Non-haematological				
Diarrhoea	39 (11%)	1 (<1%)	173 (47%)	23 (6%)
Fatigue	102 (27%)	11 (3%)	136 (37%)	18 (5%)
Asthenia	46 (12%)	9 (2%)	76 (20%)	17 (5%)
Back pain	45 (12%)	11 (3%)	60 (16%)	14 (4%)
Nausea	85 (23%)	1 (<1%)	127 (34%)	7 (2%)
Vomiting	38 (10%)	0	84 (23%)	7 (2%)
Haematuria	14 (4%)	2 (1%)	62 (17%)	7 (2%)
Abdominal pain	13 (4%)	0	43 (12%)	7 (2%)
Pain in extremity	27 (7%)	4 (1%)	30 (8%)	6 (2%)
Dyspnoea	17 (5%)	3 (1%)	44 (12%)	5 (1%)
Constipation	57 (15%)	2 (1%)	76 (20%)	4 (1%)
Pyrexia	23 (6%)	1 (<1%)	45 (12%)	4 (1%)
Arthralgia	31 (8%)	4 (1%)	39 (11%)	4 (1%)
Urinary-tract infection	11 (3%)	3 (1%)	27 (7%)	4 (1%)
Pain	18 (5%)	7 (2%)	20 (5%)	4 (1%)
Bone pain	19 (5%)	9 (2%)	19 (5%)	3 (1%)

Deaths in patients who received at least one dose of study treatment


	Mitoxantrone (n=371)	Cabazitaxel (n=371)
Total deaths during the study	275 (74%)	227 (61%)
Deaths ≤ 30 days after last dose of study drug	9 (2%)	18 (5%)
Causes of death ≤30 days after last dose of study drug		
Disease progression	6 (2%)*	0
Adverse events		
Neutropenia and clinical consequences/sepsis	1 (<1%)	7 (2%)
Cardiac	0	5 (1%)
Dyspnoea†	1 (<1%)	0
Dehydration/electrolyte imbalance	0	1 (<1%)
Renal failure	0	3 (1%)
Cerebral haemorrhage	0	1 (<1%)
Unknown cause	0	1 (<1%)
Motor vehicle accident	1 (<1%)	0
Deaths > 30 days after last dose of study drug	266 (72%)	209 (56%)

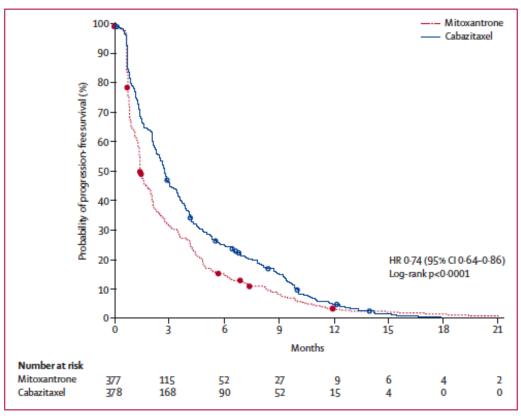
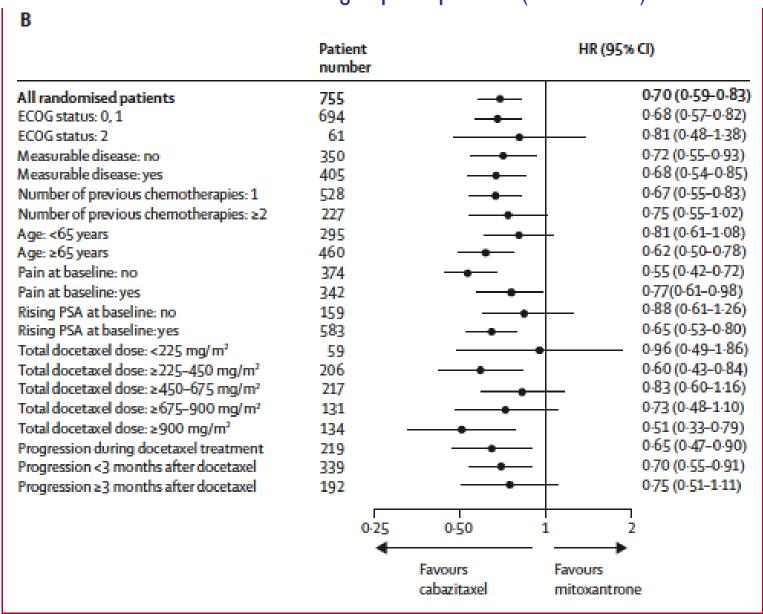

Data are number of patients (%). *Includes three patients whose death was reported as an adverse event coded as disease progression. †Dyspnoea was reported as the adverse event leading to death, but the investigator regarded the death as related to disease progression.

Table 5: Deaths in patients who received at least one dose of study treatment

Overall Survival and Progression Free Survival (TROPIC trial)



Median OS: 15.1 months (CBZ) vs. 12.7 monthsb (M) HR: 0.70 (0.59-0.83)

Median PFS: 2.8months (CBZ) vs. 1.4 monthsb (M) HR: 0.74 (0.64-0.86)

Overall Survival in subgroups of patients (TROPIC trial)

Chemotherapy works in second line!

- What to do when docetaxel eventually fails?
 - → Cabazitaxel or Abiraterone or ...clinical trials
- Docetaxel alone or in combination (estramustine)?
- Early (asymptomatic) or late (symptomatic) chemotherapy?

Docetaxel based chemotherapy in CRPC

❖ New tubulin agent in CRPC: Cabazitaxel

Other drugs and Combination therapy

Strategy in prostate cancer (early stage)

Perspectives

Epothilones and prostate cancer

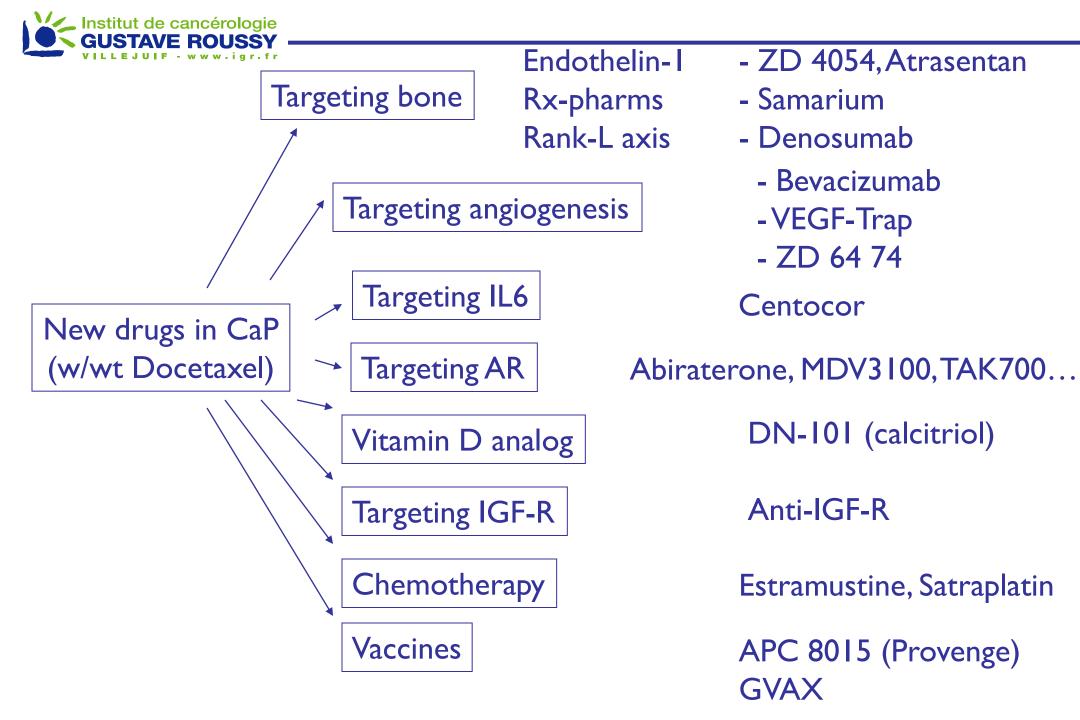
Epothilone B-Lactam (Ixabepilone)

Patupilone (Epothilone B)

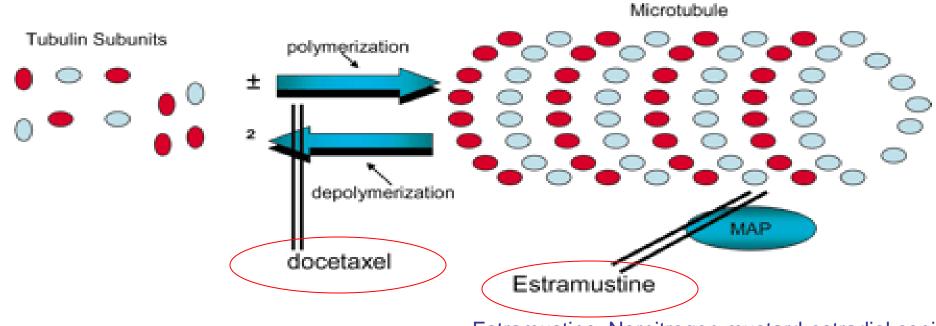
Me S OH OH

Sagopilone (ZK-EPO)

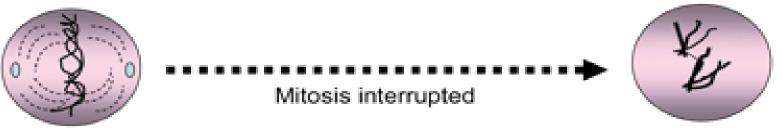
Dehydelone (KOS-1584)


New class of cytotoxic tubulin agents (Sorangium cellulosum)

Large antineoplastic activity


In particular in taxane-resistant models (breast, prostate cancer)

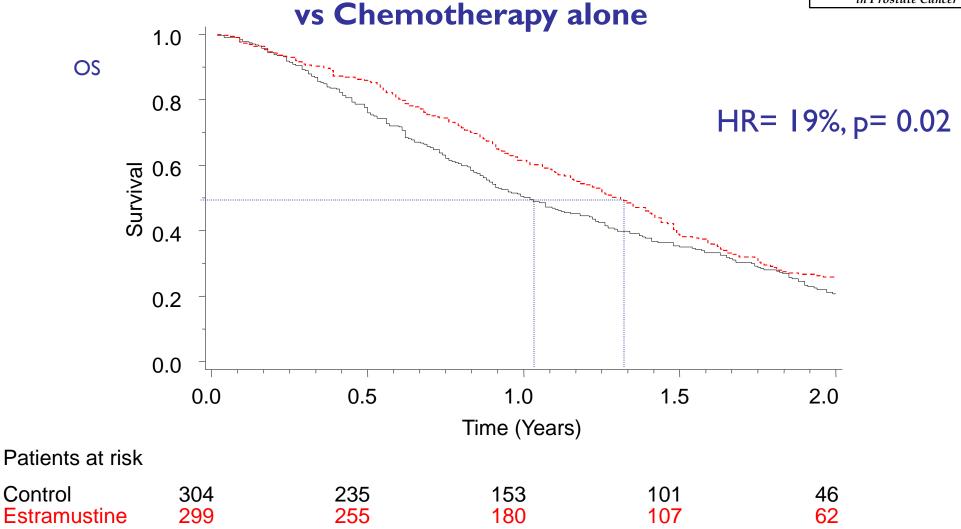
	Pts (n)	Decline PSA	RR	mOS (months)
lxabepilone+/- EMP	92	48-69%	32-48%	NA
Patupilone	45	13% (3/6 previous taxane)	0%	13.4

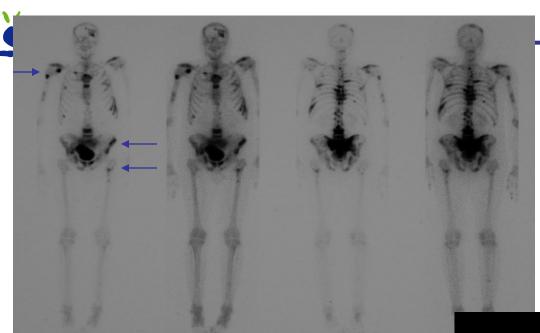

Galsky et al, 2005 Hussain et al, 2009

Metaphase microtubles forming spindles

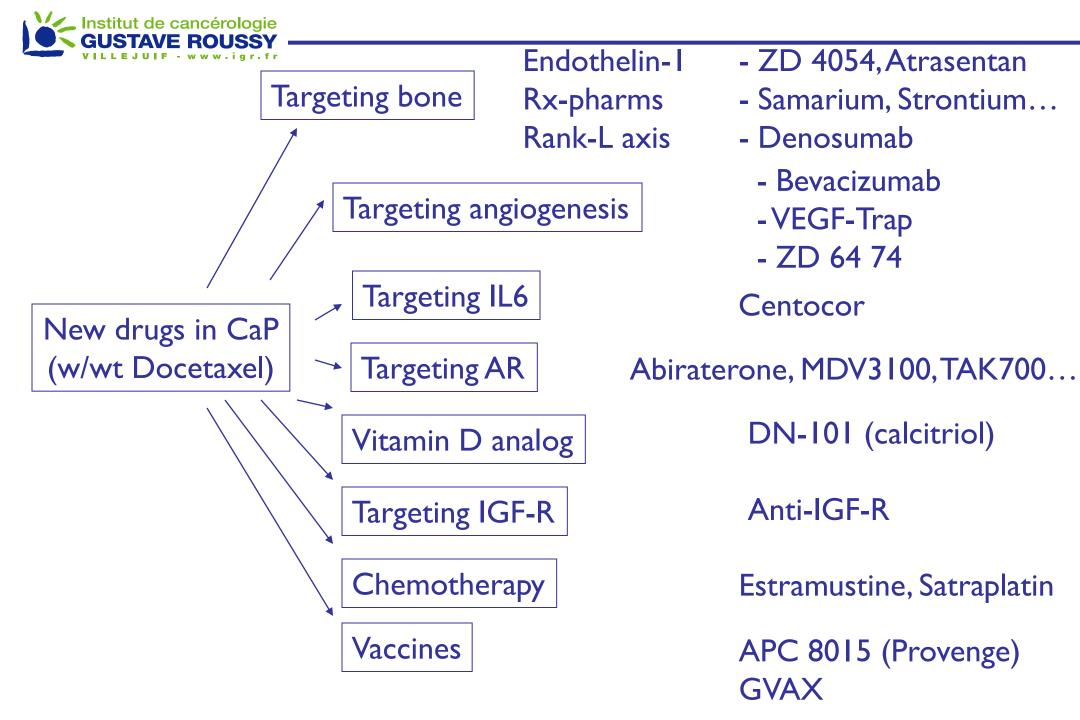
Mitotic spindles broken down

Overall survival: chemotherapy + estramustine versus chemotherapy alone

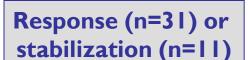

Study	No. Events / Estramustine	No. Entered Control	d OE	E Varianc	Hazard ratio Risk Redn e (Estramustine / Control) (± SD)
(a) Taxanes and	d epothilone				
MSKCC	24/47	26/48	-2.0	12.4	
USON	70/81	80/85	-11.5	36.1	
Aventis	31/48	31/44	-1.9	15.3	
Subtotal (a)	125/176	137/177	-15.4	63.8	21% ± 11
(b) Vinblastine					
MDA	28/29	30/30	1.6	13.2	
Hoosier	94/94	98/98	-11.5	46.5	
Subtotal (b)	122/123	128/128	-9.9	59.7	15% ± 12
Total (a b)	247/299	265/305	-25.3	123.5	19% ± 8
				0.0	0.5 1.0 1.5 2.C
Test	for heterogeneity	$x^{2}_{4} = 2.07$	p = 0.	12	tramustine better Control better istramustine effect with p = 0.02
Te	Test for interaction: $\chi^2_1 = 0.17$ p = 0.68				Su al Mauric Clicct Will p = 0.02



Chemotherapy + Estramustine



Bone metastases from prostate cancer

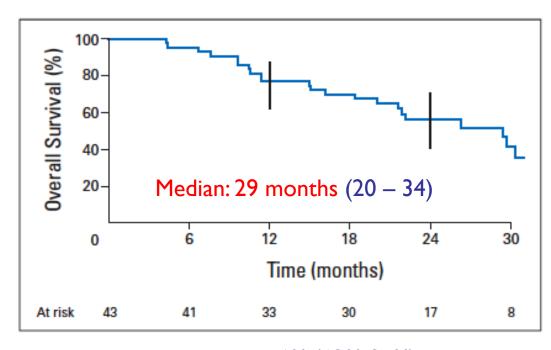


JOURNAL OF CLINICAL ONCOLOGY

CRPC and bone metastases

Induction regimen: n=43

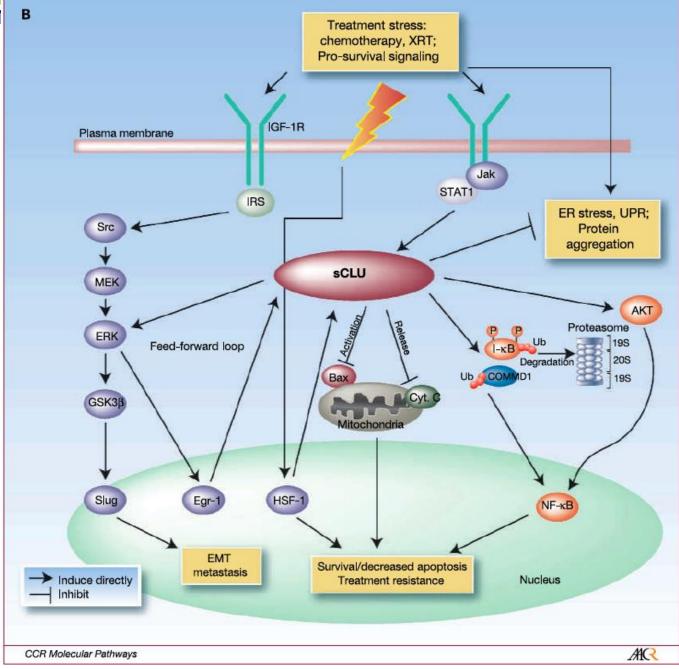
- docetaxel 70 mg/m² day 2
- estramustine I0 mg/Kg/day, day I-5(I cycle every 3 weeks)


Progression n=1

Consolidation regimen: n=42

- docetaxel 20 mg/m 2 /w x 6 w
- samarium I injection week I (37 MBq/Kg)

Phase II Trial of Consolidation Docetaxel and Samarium-153 in Patients With Bone Metastases From Castration-Resistant Prostate Cancer


Karim Fizazi, Philippe Beuzeboc, Jean Lumbroso, Vincent Haddad, Christophe Massard, Marine Gross-Goupil, Mario Di Palma, Bernard Escudier, Christine Theodore, Yohann Loriot, Elodie Tournay, Jeannine Bouzy, and Agnes Laplanche

I-year survival rate: 76% (62%-87%)

2-year survival rate: 63% (47%-77%)

Secretory clusterin is a stress activated cytoprotective chaperone

A Phase I Study of OGX-011, a 2'-Methoxyethyl Phosphorothioate Antisense to Clusterin, in Combination with Docetaxel in Patients with Advanced Cancer

Kim N. Chi, Lillian L. Siu, Hal Hirte, Sebastien J. Hotte, Jennifer Knox, Christian Kollmansberger, Martin Gleave, Emma Guns, Jean Powers, Wendy Walsh, Dongsheng Tu, and Elizabeth Eisenhauer

40 pts enrolled with

Combination with docetaxel

640 mg of OGX-011

No major side effects

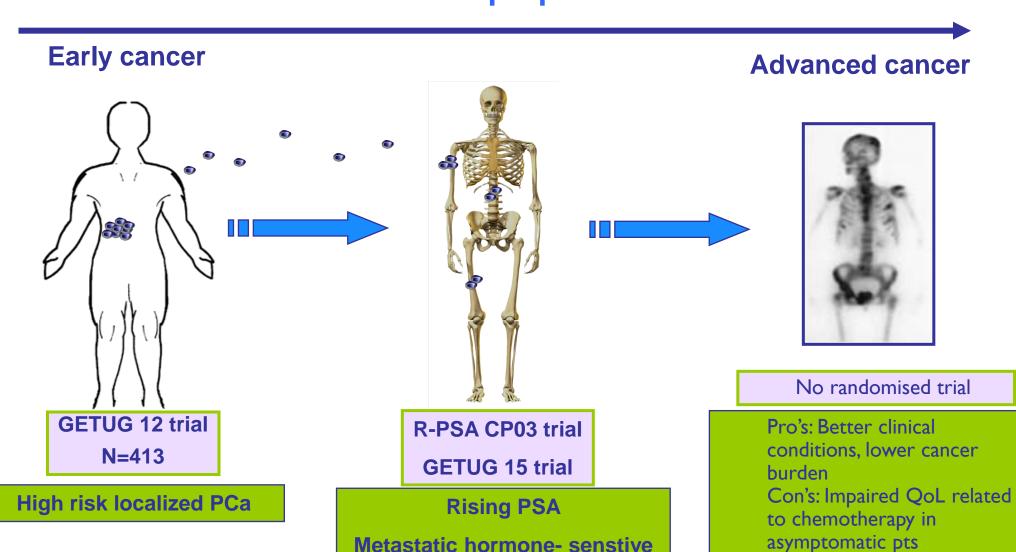
- Randomized phase II in CRPC 5 (Chi et al, 2010)
 - → 82 pts enrolled with CRPC
 - → No major side effect
 - → mOS: 23.8 months vs 16.9 months (with OGX-011 versus without)
- Large phase III ongoing

Chemotherapy works in first and second line!

- What to do when docetaxel eventually fails?
 - → Cabazitaxel or Abiraterone or ...clinical trials
- Docetaxel alone or in combination (estramustine)?
 - → Other drugs in development
 - → Combination treatment in development
- Early (asymptomatic) or late (symptomatic) chemotherapy?

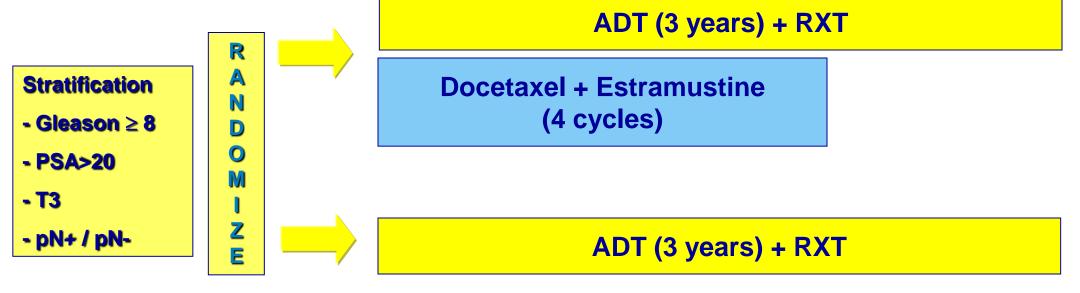
Docetaxel based chemotherapy in CRPC

❖ New tubulin agent in CRPC: Cabazitaxel


Other drugs and Combination therapy

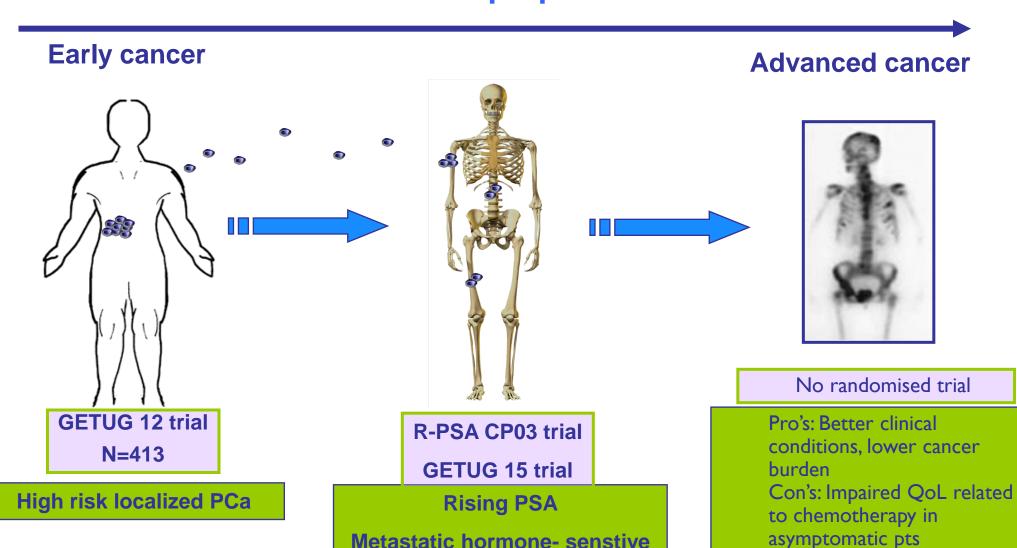
Strategy in prostate cancer (early stage)

Perspectives



Early vs. Late chemotherapy in Prostate cancer: A French perspective

High risk prostate cancer GETUG 12 trial



Primary endpoint: Progression-free survival

n = 413/400 pts

Early vs. Late chemotherapy in Prostate cancer: A French perspective

Docetaxel rechallenge in CRPC...

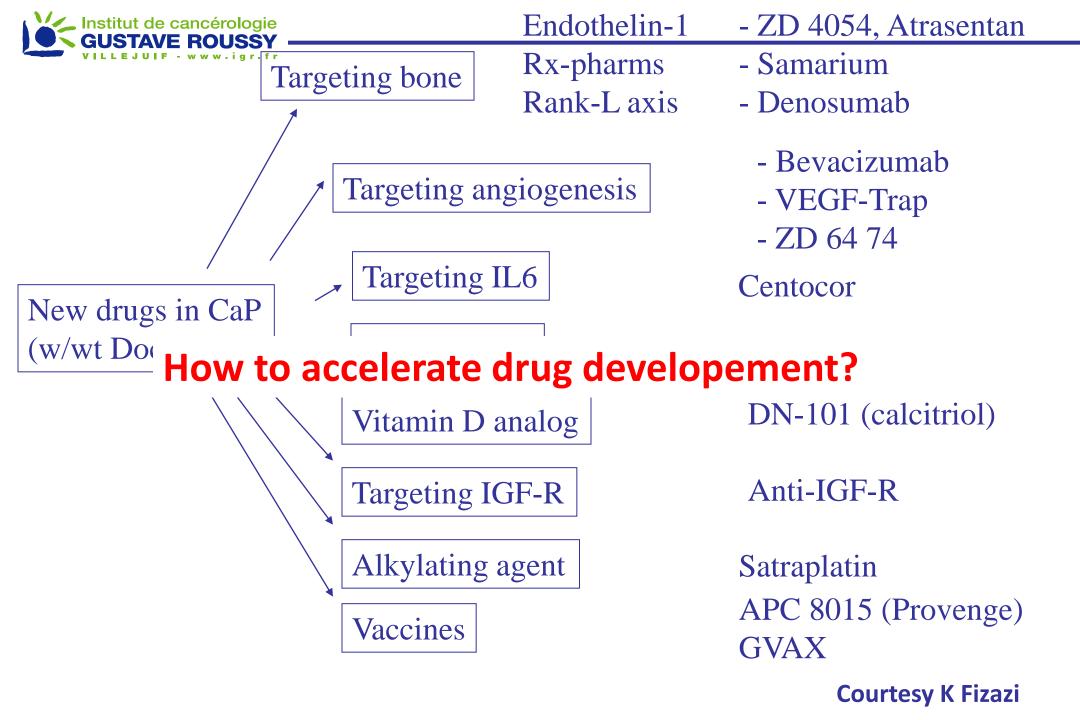
- Common practive in medical oncology
 - → Platinum based chemotherapy: ovarian, SCLC, NSCLC...
 - → Oxaliplatine in colon cancer
- Only small retrospective trials in CRPC
 - → No randomized trial
 - → No clear definition of « taxane sensitive » disease

Authors	Pts (N)	PSA response	mPFS
Loriot et al, 2010	39	38-64%	4.3 months
Ross et al, 2008	34	18%	3 months

Phase III trial docetaxel versus docetaxel+OGX011

When to start chemotherapy?

- What to do when docetaxel eventually fails?
 - → Cabazitaxel or Abiraterone or ...clinical trials
- Docetaxel alone or in combination (estramustine)?
 - → Other drugs in development
 - → Combination treatment in development
- Early (asymptomatic) or late (symptomatic) chemotherapy?
 - → Clinical trials ongoing

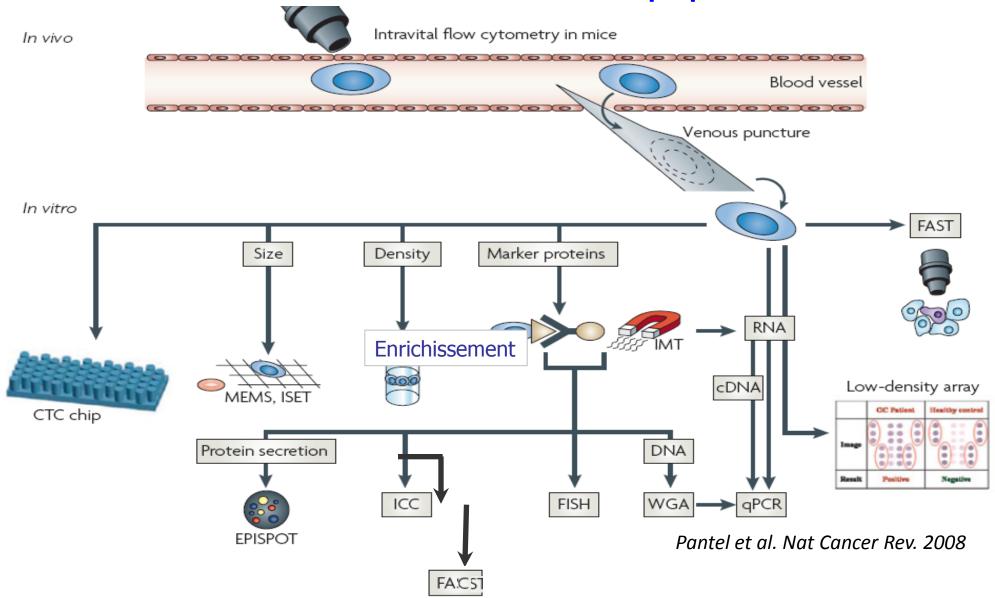

Docetaxel based chemotherapy in CRPC

❖ New tubulin agent in CRPC: Cabazitaxel

Other drugs and Combination therapy

Strategy in prostate cancer (early stage)

Perspectives


Learning too little, too late?

We need to design clinical trials that can test and answer critical biological questions about disease drivers utilizing targeted drugs and biomarkers (DeBono, ASCO 2008)

- Molecular biology
 - → Personnalized Medicine
- CTC evaluation is one of the most promising biomarker in cancer
 - → Previous studies in breast, colon and prostate cancer have shown that CTC corrlete with survival

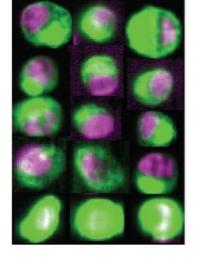
Isolation/Detection of CTC in peripheral blood

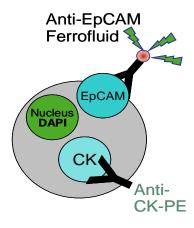
VERIDEX: CellSearch™ System

- Selection positive EPCAM
- 2 Staining: CK 8/18/19, CD45, DAPI 3 others: HER2/Neu, MUC1, EGF-R)

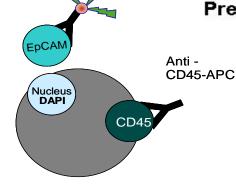
Sample Collection

Reagents: CTC capture & staining

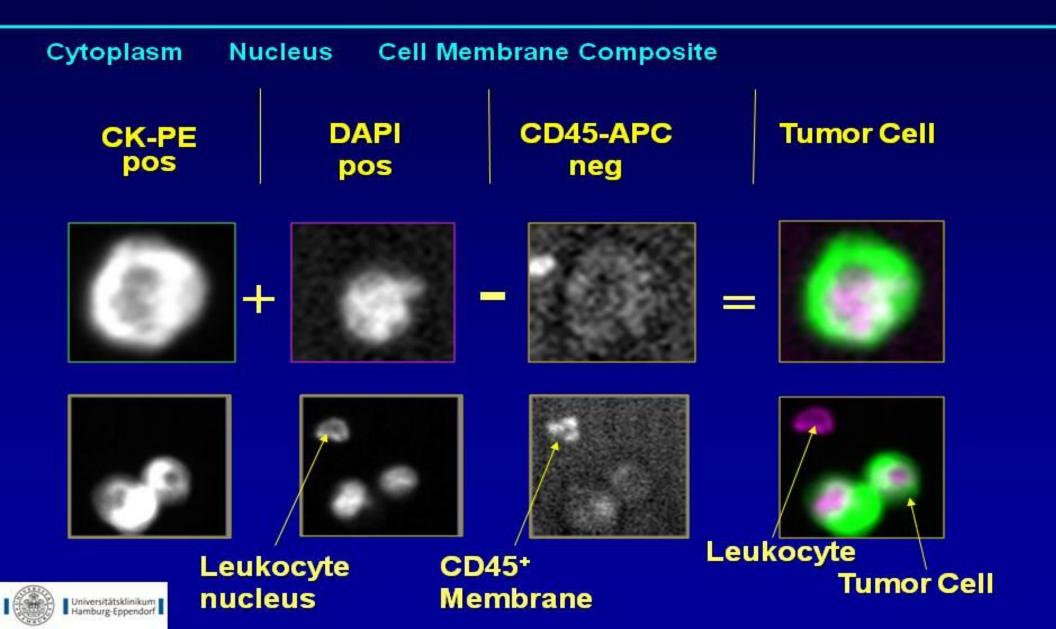

Sample **Processing**



Sample **Presentation**



Sample **Analysis**



Epithelial Cell

Leukocyte

CellSearch™ System: Images of Tumor Cells

Potential Applications for detection of Micrometastatic Tumor Cells (CTCs)

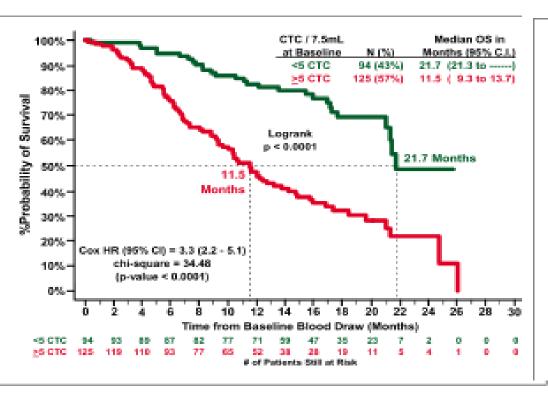
Prediction of prognosis and real-time monitoring of the efficacy of systemic therapies

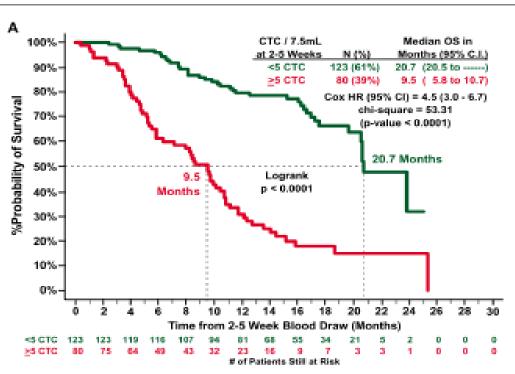
Marker of recurrence (prognosis and stratification)

Marker of response to therapy (surrogate marker)

More readily available source of tumor to mesure target modulation (biological therapies)

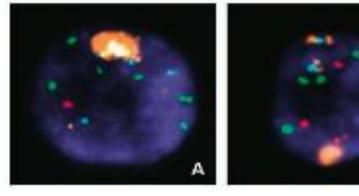
Source of material to study biology of metastasis

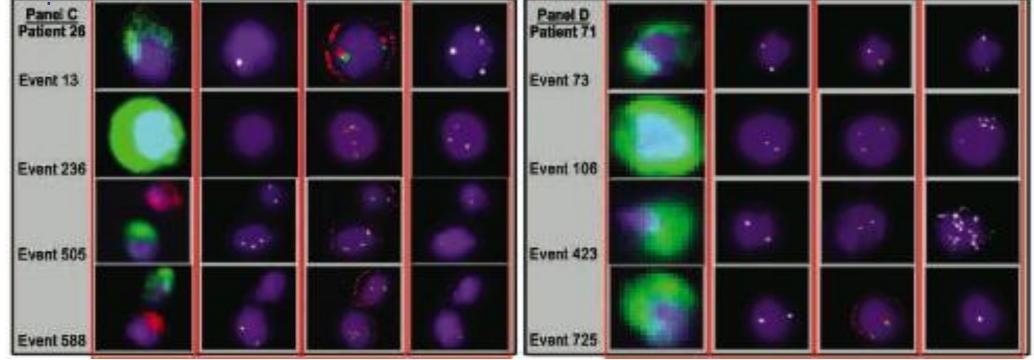



Circulating tumor cells (CTCs) and epithelial cancers

Prognostic and predictive information in advanced solid tumors

Breast cancer, colon cancer, prostate cancer...

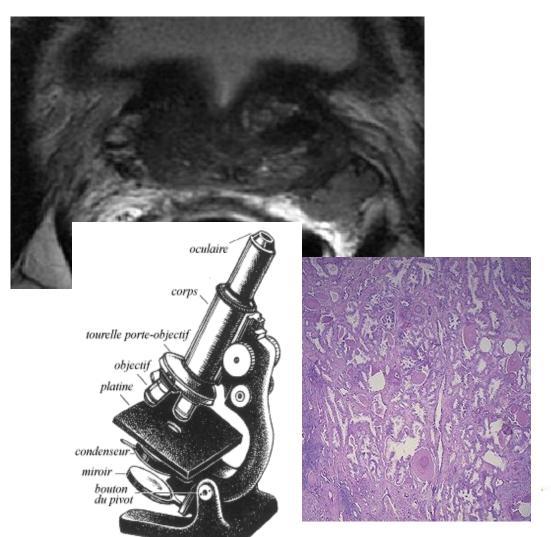



CTC at baseline and 2-5 weel after start of therapy predict survival in men undergoing treatment for CRPC

CTC as a « Surrogate » marker of tumor? Molecular characterization

The CellTracks® technology also supports the molecular evaluation of isolated CTC by:

- Immunofluorescence (IF) for protein expression
- -Fluorescent in-situ hybridization (FISH) for DNA amplification;
- -Androgen receptor sequencing
- Detection of TMPRSS2/ETS gene translocations

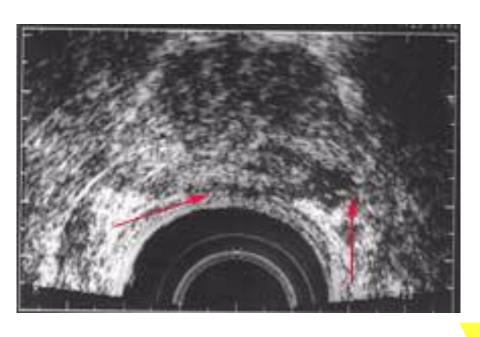


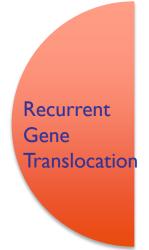


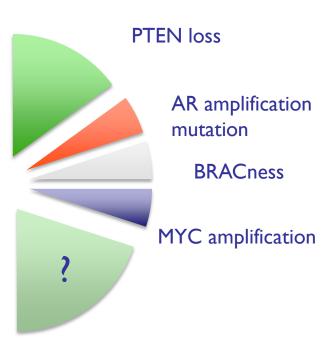
Attard et al, Cancer Res 2009; Leversha et al, Clin Cancer Res 2009

What is Prostate Cancer? An Old view

The same treatment for everybody? For different disease?

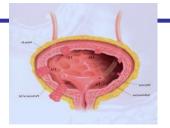




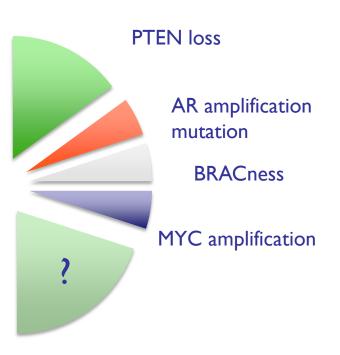


Pathology-based therapy

cytotoxic


IGF-IR activation Bcl2 expression P53 Pim Kinase

Molecular classification and Target-oriented therapy


Pathology-based therapy

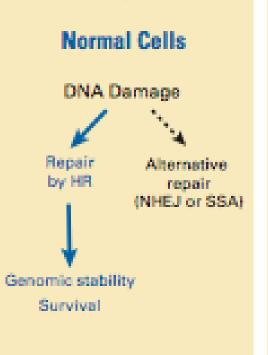
cytotoxic

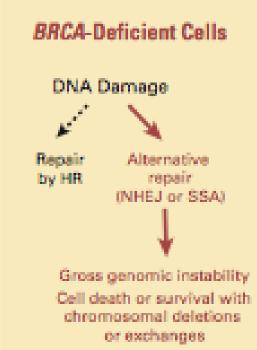
IGF-IR activation Bcl2 expression **P53** Pim Kinase

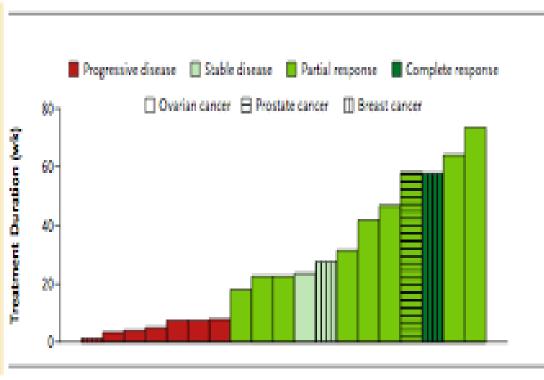
Courtesy to Dr Besse

Molecular classification and Target-oriented therapy

The NEW ENGLAND JOURNAL of MEDICINE


ESTABLISHED IN 1812


JULY 9, 2009


VOL. 361 NO. 2

Inhibition of Poly(ADP-Ribose) Polymerase in Tumors from BRCA Mutation Carriers

Synthetic lethal concept

Ashworth A, JCO 2008; Fong et al, NEJM 2009

Conclusion

- Docetaxel based chemotherpy is the standard of care in metastatic CRPC patients
- Cabazitaxel is a potential new therapeutic option for the treatment of patients with mCRPC after failure of docetaxel-based therapy
- Other agents are in development, alone or in combination with docetaxel/cabazitaxel based chemotherapy
- We need to incorporate molecular biology in our clinical daily practive in the next decade...

Thank you

IGR GU Oncology group

...and Discussion

