Bridging the gap to utilising whole genome data in drug development:

Leveraging next generation sequencing in somatic cancer genetics

Andy Futreal Cancer Genome Project Wellcome Trust Sanger Institute

welcometrust

Adenoid Cystic Carcinoma Research Foundation

THE $\mathscr{K}_{\mathrm{AY}} \mathscr{K}_{\mathrm{ENDALL}}$ leukaemia fund

2002 – BRAF mutations in human cancer.

Heteroduplex/PCR resequencing of a handfull of genes

BRAF mutation	c				Cancer	coll lices						Primar	turneurs.			
GPPY FINISHING	>		WEING VOI HIND						Prankary Mattours							
Nucleotide	Amino acid	(1) Mel.	(2) Colo. ca.	(3) Gloma	(4) Lung ca.	(5) Sarcoma	(6) Breast	(7) Ovarian	(8) Other	(1) Mel. STC	(2) Mol.	(3) Colo. ca.	(4) Ovarian*	(5) Sarcoma	(6) Othert	Total
G1388A G1388T	G483E G463V		1					1								1
G1394C G1394A G1394T	G485A G485E G485V				1					1	1					1 1 1
G1403C G1403A	G468A G468E				2							1				2 1
G1753A	E585K												1			1
¥1782G	F594L											1				1
G1783C	G595R		1													1
C1786G T1787G	L596V L596R				1								1			1 1
T1796A TG1796-97AT	V599E V599D	19 1	5	4		5	1		1	11	5	2	3	1	0	57 1
No. samples screened Per cent	Total	20 34 59%	7 40 18%	4 38 11%	4 131 3%	5 59 9%	1 45 2%	1 26 4%	1 172 0.6%	12 15 80%	6 9 67%	4 33 12%	5 35 14%	1 182 0.5%	0 104 0%	71 923 8%

Arrino acid residues are grouped in blocks. Three further BRMF coding sequence variants were identified (G2041A R681Q in the HEC1A endometrial cancer cell line. T974C I325T in the ZR-75-30 breast cancer cell line, and C2180T A727V in the H33AJ-JA1 T-ALL cell line). These were not present in 341 control DNAs. Lane numbers (in parentheses) are provided for convenience. MeL, melanoma; Colo. ca., colorectal cancer; MeL STC, melanoma short-term culture.

*Four out of ten LMP (ow malignant potential); 1 out of 25 malignant epithelial.

+ Glioma (n = 15), breast cancer (n = 33), prostate cancer (n = 23), HNSCC (head and neck squamous cell carcinoma) (n = 19), lung cancer (n = 14).

What we learned from earlier PCR- based systematic screens

- The majority of somatic mutations identified in large-scale resequencing screens are likely to be passenger events
- There is evidence for multiple infrequently mutated genes under positive selection
- There are likely to be many genes that can contribute to oncogenesis when mutated
- A large number of genes sequenced in a large number of cancers of "same" type will be needed to begin to fully elucidate the complement of cancer genes

PCR exon-resequencing ccRCC study

101 ccRCC cases (96 clinical samples + 5 matched pair cell lines

Screen the coding exons of 3,544 genes (750 Mb total)

Copy number and expression

Follow-up series of 311 clear cell carcinoma clinical samples with matching normals

Results

VHL point mutations in ~60%, VHL/Hypoxia signature in ~85%

Very quiet on SNP6.0, no high level focal amplicons

75/91 (82%) of cases assessed for expression had upregulation of genes associated with cellular hypoxia Four/five significantly mutated genes in ccRCC are histone methylase/demethylases

> UTX – H3K27 demethylase and MLL2/3 complex in H3K4 methylation 12/407 cases mutated (12/12 truncating)

SETD2 – H3K36 methyltransferase 15/407 cases mutated (12/15 truncating)

JARID1C – H3K4 demethylase 14/407 cases mutated (12/14 truncating)

MLL2 – H3K4 methyltransferase 17/407 (including a silent, 6 truncating, 5 missense)

van Haaften et al. Nat Genet. 2009 May;41(5):521-3. Epub 2009 Mar 29. Dalgliesh et al. Nature. 2010 Jan 21;463(7279):360-3. Epub 2010 Jan 6.

The allelic architecture of driver mutations in clear cell renal cancer

Whole 'exome' sequencing

Rearrangement screens

Whole genome shotgun

Solution Hybrid Capture of all coding exons and miRNA genes

Exome is GenCode/ICGC includes 21,416 protein coding genes + 1664 miRNA genes

Clinical Samples in exome sequencing

Sample	Sex	Age	Grade	Histology	VHL mutation^	SETD2 mutation	UTX mutation
PD2125a	М	82	4	Clear Cell			
PD2126a	F	74	1	Clear Cell	c.236_241delGCAGTC; p.R79_P81>P	c.1801T>A; p.R601*	
PD2127a	F	59	4	Clear Cell	· _		
PD2144a	F	63	4	Clear Cell	c.525delC; p.Y175*		
PD2147a	F	50	2	Clear Cell			c.4161_4162delTG; p.Y1387fs*1
PD3295a	М	62	4	Clear Cell			i
PD3441a	М	69	1	Clear Cell	c.223_225delATC; p.F76_C77>C		

^ VHL mutations in PD2126a and PD3441a were not "re-discovered" in exome sequencing due to poor coverage of the highly GC-rich first exon.

PBRM1 is somatically mutated in 40% (92/227) of ccRCC

ARID1A ** also mutated in ccRCC

Nature, Jan 20, 2011

36/38 PBRM1 mutant ccRCC have hypoxia signature

55/107 cases with a demonstrable* VHL mutation have a PBRM1 mutation

9/9 cases with a SETD2 mutation have mutation in either VHL or PBRM1

6/9 SETD2 mutant cases have a mutation in all three gene

3 tumour suppressor genes unmasked with only 4 hits

3p LOH is most frequent marker in ccRCC

*point mutations only

Breast Cancer Exome Sequencing

- 72 cases
 - 46 ER+ (HER2-)11 Triple Negative12 HER2+1 BRCA1 mut, 2 BRCA2 mut
- Exome is GenCode/ICGC includes 21,416 protein coding genes + 1664 miRNA genes

Solution hybrid capture (Agilent) followed by sequencing on Illumina and variant calling as just described

Follow-up in 300 cases

ER+ Cases I

	TOTAL														
Sample	mutations	AKT1	AKT2	CDH1	GATA3	KRAS	MAP2K4	NF1	PIK3CA	PTEN	RB1	SETD2	STK11	SMAD4	TP53
PD3852a	13														
PD3854a	20														
PD3856a	50								PIK3CA						TP53
PD3857a	22								PIK3CA						
PD3858a	61														
PD3985a	33								PIK3CA						TP53
PD3986a	24														TP53
PD3989a	25								PIK3CA	PTEN					
PD3993a	24														
PD3994a	7														
PD3995a	39	AKT1			GATA3		MAP2K4	NF1							
PD3996a	14									PTEN					
PD3997a	13														
PD3999a	28														
PD4000a	48														
PD4004a	44				GATA3										
PD4087a	44				GATA3										
PD4092a	25														
PD4093a	78														TP53
PD4094a	86								PIK3CA						
PD4101a	19														
PD4104a	36				GATA3					PTEN					
PD4105a	40				GATA3										TP53
PD4108a	26								PIK3CA						
PD4110a	25			CDH1					PIK3CA						
PD4111a	18				GATA3										
PD4134a	51		AKT2												

Triple Negative Cases

	TOTAL													
Sample	mutations AKT1	AKT2	CDH1	GATA3	KRAS	MAP2K4	NF1	PIK3CA	PTEN	RB1	SETD2	STK11	SMAD4	TP53
PD3987a	38													TP53
PD4002a	118													TP53
PD4003a	126													
PD4091a	36													TP53
PD4098a	106													TP53
PD4102a	77													TP53
PD4107a	83													TP53
PD4109a	121													TP53
PD4113a	39													TP53
PD4130a	35													TP53
PD4133a	88									RB1				TP53

Whole 'exome' sequencing

Rearrangement screens

Whole genome shotgun

Tumour-specific rearrangements

Plasma DNA

Serial measurements

Whole 'exome' sequencing

Rearrangement screens

Whole genome shotgun

Comprehensive catalogues of somatic mutations in cancer

- Detection of all classes of somatic variant
 - base substitutions
 - insertions and deletions
 - rearrangements
 - copy number
- Detection of somatic variants in all genomic regions
 - coding exons
 - noncoding exons
 - introns
 - intergenic regions

Somatic mutations in Colo-829 and NCI-H209

C	olo-829	NCI-H209
Total Somatic Substitutions	33,345	22,910
Insertion/deletion	66	65
Rearrrangements	37	58
CODING		
missense	168	92
silent	104	36
nonsense	14	4

International Cancer Genome Consortium

European Union / France

Some Key (immediate) Issues and Challenges

Tumour Complexity/Heterogeneity

Ability to utilise small biopsy and FFPE samples

Informatics

....INFORMATICS

Cancer Genome Project

Sally Bamford **David Beare Graham Bignell** Nidhi Bindal Adam Butler **Helen Davies Charlotte Dunham** Simon Forbes Christopher Greenman Claire Hardy **Mingming Jia David Jones** Chai Yin Kok Calli Latimer King Wai Lau **Kenric Leung** Meng-lay Lin Mark Maddison John Marshall David McBride Stuart McLaren Andrew Menzies Lina Chen Juok Cho Danushka Galappaththige **Catherine Leroy**

Laura Mudie Keiran Raine Rebecca Shepherd Lucy Stebbings <u>Philip Stephens</u> <u>Patrick Tarpey</u> Jonathan Teague Tony Webb Stacey Price <u>Ignacio Varela</u>

Mathew Garnett Anne McLaren-Douglas Andrew Barthorpe Patrick Brien Laura Hirst Frances Jewitt Tatiana Mironenko Jorge Soares Ian Thompson

Serena Nik-Zainal Elizabeth Murchison Jennifer Yen

Sancha Martin Angela Macharia Wendy McLaughlin

<u>Erin Pleasance</u> Gillian Dalgliesh

ccRCC/PBRM1 Studies

Bin Teh Dachuan Huang Choon Kiat Ong Waraporn Chan-on Chutima Subimerb Kyle Furge Karl Dykema

ICGC Breast Cancer Working Group

Mike Stratton, Peter Campbell, Ultan McDermott

Paired-end Reads

Random 400bp fragments of matching cancer and normal genomes Hundreds of millions of individual molecules sequenced simultaneously

Map paired sequences back to reference genome Compare and look for tumour-specific variants

Assay design

